Separating a Cancer Prevention Drug from Heart Disease Risk

Several clinical studies have shown that taking the anti-inflammatory drug celecoxib can reduce the risk of developing polyps that lead to colon cancers, at the cost of increasing the risk of heart disease. But what if this tradeoff was not necessary?

Researchers at Winship Cancer Institute of Emory University have identified a way that celecoxib (Celebrex) pushes cancer cells into suicide, separately from its known effects. The Winship team’s results outline a route to alternatives to celecoxib that keep its cancer-preventive properties while avoiding its risks.

Celecoxib’s risk profile has confined its use to people who have inherited cancer risk or those who have had cancer already. Its effectiveness at stopping tumor progression and recurrence is being tested in several clinical trials for people who have had lung, head and neck and other types of cancer.

Shi-Yong Sun, PhD, and colleagues report in an upcoming issue of the journal Cancer Research that celecoxib inhibits an enzyme called GSK3 (glycogen synthase kinase 3) in lung cancer cells. This causes the disappearance of a protein called c-FLIP, which usually staves off apoptosis, a form of cellular suicide.

“We have been focusing on how celecoxib induces c-FLIP degradation and apoptosis in cancer cells, independent of COX-2 inhibition,” Sun says.

Scientists think that celecoxib’s ability to inhibit COX-2 enzymes is the basis for its anti-inflammatory properties as well as its influence on heart disease. In cell culture, some chemical relatives of celecoxib have been shown to have anticancer effects without inhibiting COX-2.

Sun is professor of hematology and medical oncology at Emory University School of Medicine and a Georgia Cancer Coalition Distinguished Cancer Scholar. The first author of the paper, postdoc Shuzhen Chen, is now at the Chinese Academy of Medical Sciences’ Institute of Medicinal Biotechnology in Beijing. Fadlo Khuri, MD, deputy director of Winship Cancer Institute, is a co-author on the paper.

The result was surprising partly because until a few years ago, scientists thought that inhibiting GSK3, while possibly helpful in diseases such as diabetes, could promote cancer. However, recent results suggest that blocking GSK3 may stop cell growth in prostate, pancreatic and colon cancers and some types of leukemia.

Sun cautions: “We do not know whether GSK3 inhibition by celecoxib has anything to do with celecoxib’s cardiovascular risk.”

The research was supported by the Georgia Cancer Coalition, the Department of Defense and the National Institutes of Health.

S. Chen, W. Cao, P. Yue, C. Hao, F.R. Khuri and S.Y Sun. Celecoxib promotes c-FLIP degradation through Akt-independent inhibition of GSK3. Cancer Res. Online ahead of print. (2011).

The Robert W. Woodruff Health Sciences Center of Emory University is an academic health science and service center focused on missions of teaching, research, health care and public service.

Learn more about Emory’s health sciences:
Blog: http://emoryhealthblog.com
Twitter: @emoryhealthsci
Web: http://emoryhealthsciences.org

Media Contact

Holly Korschun EurekAlert!

More Information:

http://www.emory.edu

All latest news from the category: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Back to home

Comments (0)

Write a comment

Newest articles

Bringing bio-inspired robots to life

Nebraska researcher Eric Markvicka gets NSF CAREER Award to pursue manufacture of novel materials for soft robotics and stretchable electronics. Engineers are increasingly eager to develop robots that mimic the…

Bella moths use poison to attract mates

Scientists are closer to finding out how. Pyrrolizidine alkaloids are as bitter and toxic as they are hard to pronounce. They’re produced by several different types of plants and are…

AI tool creates ‘synthetic’ images of cells

…for enhanced microscopy analysis. Observing individual cells through microscopes can reveal a range of important cell biological phenomena that frequently play a role in human diseases, but the process of…

Partners & Sponsors