Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scripps Research scientists find new way to attack cancerous cells

08.06.2010
The findings open the door to the development of more effective therapies for lymphomas and leukemias

Scripps Research Institute scientists have discovered a new way to target and destroy a type of cancerous cell. The findings may lead to the development of new therapies to treat lymphomas, leukemias, and related cancers.

The study, which appears in the June 10, 2010 edition of the journal Blood, showed in animal models the new technique was successful in drastically reducing B cell lymphoma, a cancer of immune molecules called B cells.

"[The method] worked immediately," said Scripps Research Professor James Paulson, who led the research. "We are very interested in moving this technology forward to see if it would be applicable to treatment of humans and to investigate other applications for this kind of targeting."

A Sweet Spot

In his research program at Scripps Research, Paulson has studied glycoproteins, which are proteins decorated with sugars, for many years. While these molecules have traditionally proven challenging to understand, limiting their pharmaceutical applications, Paulson has pioneered new techniques to study and manipulate these enigmatic molecules.

In the new research, Paulson and his colleagues applied some of the lab's insights to a problem with great medical relevance—finding a new way to target and destroy cancer cells.

Specifically, in the new study the team set out to attack B cell lymphoma (which includes Hodgkin lymphoma and non-Hodgkin lymphoma), a type of cancer diagnosed most frequently in older individuals and those with compromised immune systems. Each year approximately 70,000 people are diagnosed with B cell lymphomas in the United States alone, according to the American Cancer Society. While the drug rituximab is often effective at treating the disease, each year 22,000 patients still die from B cell malignancies.

Normally, B cells provide an important immune function circulating throughout the bloodstream to help in the attack of infectious agents. But when B cells become cancerous, the question becomes how to pick them out of the crowd of other molecules in the body to target them for destruction, ideally without affecting surrounding tissues.

Because of his previous research, Paulson knew that B cells had a unique receptor protein on their surfaces that recognized certain sugars found on glycoproteins. Could the team create a viable potential therapeutic that carried these same sugars to identify and target these cells?

Toward a "Magic Bullet"

Paulson and colleagues decided to try a unique approach to this problem.

The scientists combined two different types of molecules into one, using both new and tried-and-true technology. One part of the potential therapeutic was composed of a specialized sugar (ligand) recognized by the B cell receptor, called CD22, expressed on the surface of B cells. This was attached to the surface of the other portion of the potential therapeutic, a nanoparticle called a "liposome," loaded with a potent dose of a proven chemotherapy drug.

"The advantage is that we already know a lot about how liposomes act in the body because they are approved drugs," said Paulson. "They have a long circulatory half-life. They are formulated so they are not taken up by the macrophages in the liver. So we just used the same formulation, attached these ligands, and went right into in vivo studies."

The chemotherapy drug chosen was doxorubicin, which is used in the treatment of a wide range of cancers. First identified in the 1950s, doxorubicin was originally isolated from bacteria found in soil samples taken from a 13th-century Italian castle. The team used a nanoparticle formulation of doxorubicin called Doxil, in which the drug is encapsulated inside the liposomal nanoparticle, which Paulson explains protects normal cells from the drug until it reaches the cancer.

Normally Doxil is passively delivered to tumors by exiting leaky tumor vasculature, and the drug slowly leaks out to kill the tumor. But by decorating the nanoparticles with the CD22 ligand, the team made the nanoparticles into a type of Trojan horse that is actively targeted to and taken up by human lymphoma B cells, carrying the drug inside the cell.

In the current research, the team administered their new compound to immune-compromised mice that had been infected with B cell lymphoma cells (Daudi Burkitt type). The team used two different formulations of the molecule, one decorated with two percent ligands, the other with five percent. The mice received only one dose.

The results were remarkable. No mouse in the control group lived to the end of the 100-day trial, but five of the eight mice receiving the higher ligand dose of the compound survived.

The scientists then looked to see if they could detect any residual tumor cells in the survivors, knowing that in a mouse that is paralyzed by the disease 95 percent of the cells in the bone marrow are tumor cells.

"When we looked at the bone marrow of those that had survived to 100 days, we couldn't detect any [tumor cells]," said Paulson. "Our detection limit was down to 0.3 percent. It was pretty impressive."

To extend the results, the scientists examined their compound's activity in blood samples from human patients with three types of B cell lymphomas—hairy cell leukemia, marginal zone lymphoma, and chronic lymphocytic leukemia. The scientists found that the compound also effectively bound to and destroyed these diseased B cells.

Encouraged by the results, the team is now working to further improve the drug platform, looking for ways to increase the specificity of B cell targeting as well as exploring the technology's use with other chemotherapy agents.

The first author of the paper, "In vivo targeting of B-cell lymphoma with glycan ligands of CD22," was Weihsu Chen of Scripps Research. In addition to Paulson, additional authors were Gladys Completo of Scripps Research, Darren Sigal, and Alan Saven of Scripps Clinic Medical Group, and Paul Crocker of the University of Dundee (UK). For more information, see http://bloodjournal.hematologylibrary.org/cgi/content/abstract/blood-2009-12-257386v1

The research was funded by grants from the National Institute of Allergy and Infectious Diseases (NIAID) and the National Institute of General Medical Sciences (NIGMS) of the National Institutes of Health (NIH).

About The Scripps Research Institute

The Scripps Research Institute is one of the world's largest independent, non-profit biomedical research organizations, at the forefront of basic biomedical science that seeks to comprehend the most fundamental processes of life. Scripps Research is internationally recognized for its discoveries in immunology, molecular and cellular biology, chemistry, neurosciences, autoimmune, cardiovascular, and infectious diseases, and synthetic vaccine development. Established in its current configuration in 1961, it employs approximately 3,000 scientists, postdoctoral fellows, scientific and other technicians, doctoral degree graduate students, and administrative and technical support personnel. Scripps Research is headquartered in La Jolla, California. It also includes Scripps Florida, whose researchers focus on basic biomedical science, drug discovery, and technology development. Scripps Florida is located in Jupiter, Florida.

Keith McKeown | EurekAlert!
Further information:
http://www.scripps.edu

More articles from Health and Medicine:

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

nachricht Direct conversion of non-neuronal cells into nerve cells
03.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>