Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scripps Research scientists establish new class of anti-diabetic compound

05.09.2011
Research offers hope for better treatments for diabetes patients

In a joint study, scientists from The Scripps Research Institute and Harvard University's Dana-Farber Cancer Institute have established a new class of anti-diabetic compound that targets a unique molecular switch.

The finding paves the way for the development of anti-diabetic therapeutics with minimal adverse side effects plaguing currently available drugs such as Avandia (rosiglitazone), scheduled to be removed from pharmacy shelves this fall due to concerns about increased risk of heart attack.

The new study, led by Patrick R. Griffin, professor and chair of the Department of Molecular Therapeutics at Scripps Florida, Bruce Spiegelman, professor of cell biology at the Dana-Farber Cancer Institute, and Theodore Kamenecka, associate scientific director of medicinal chemistry at Scripps Florida, was published September 4, 2011, in the journal Nature. The study describes a new compound known as SR1664.

"In this study, we demonstrate that we have discovered novel compounds that work effectively through a unique mechanism of action on a well-validated clinical target for diabetes," said Griffin. "This unique mechanism of action appears to significantly limit side effects associated with marketed drugs. This study is a great example of interdisciplinary, inter-institutional collaboration with chemistry, biochemistry, structural biology, and pharmacology."

"It appears that we may have an opportunity to develop entire new classes of drugs for diabetes and perhaps other metabolic disorders," said Spiegelman.

Diabetes affects nearly 24 million children and adults in the United States, according to the America Diabetes Association.

A Viable Therapeutic Target

The study follows previous research by the authors published last year in Nature (Volume 466, Issue 7305, 451-456) that suggested an obesity-linked mechanism that may be involved in the development of insulin-resistance. In that research, the team found disruptions in various genes when a protein known as PPARγ undergoes phosphorylation (when a phosphate group is added to a protein) by the kinase Cdk5, an enzyme involved in a number of important sensory pathways.

The new study confirms that blockage of Cdk5's action on PPARG is a viable therapeutic approach for development of anti-diabetic agents. The new SR1664 compound is a potent binder to the nuclear receptor PPARG, but does not activate gene transcription via the receptor's normal mechanism.

While Griffin stressed the difficulty of fully assessing side effects of new compounds such as SR1664, the new research is extremely positive in that it clearly demonstrated fewer of the major well-documented side effects, such as weight gain or increased plasma volume, from SR1664 as compared to Avandia in diabetic mice.

While both the mice treated with Avandia and those treated with SR1664 demonstrated improved blood sugar levels, those treated with Avandia showed weight gain and increased fluid retention within a few days of beginning treatment; those being treated with SR1664 showed none of these side effects. In cell culture studies, SR1664 also appeared to have little effect on bone formation, nor did it increase fat generation in bone cells, another side effect of current therapies such as Avandia.

While S1664 likely will not be developed as a drug, it now serves as a molecular scaffolding for the creation of similar compounds with potential to treat diabetes. "With data in hand showing that our compounds are as efficacious as the currently marketed PPARG modulators, while demonstrating a significant improvement of side effects in limited studies, we are now advancing newer compounds with improved pharmaceutical properties into additional studies," Griffin said.

The first authors, denoted as equal contributors to this study, "Anti-Diabetic Actions of a Non-Agonist PPARG Ligand Blocking Cdk5-Mediated Phosphorylation," are Jang Hyun Choi and Alexander S. Banks of Dana-Farber Cancer Institute and Theodore M. Kamenecka and Scott A. Busby of The Scripps Research Institute. Other authors include Michael J. Chalmers, Naresh Kumar, Dana S. Kuruvilla, Youseung Shin, Yuanjun He, David Marciano, and Michael D. Cameron of Scripps Research; Dina Laznik of the Dana-Farber Cancer Institute; Michael J. Jurczak and Gerald I. Shulman of the Howard Hughes Medical Institute; Stephan C. Schürer and Dušica Vidović of the University of Miami; and John B. Bruning of Texas A&M University.

The study was supported by The National Institutes of Health.

Mika Ono | EurekAlert!
Further information:
http://www.scripps.edu

Further reports about: Cancer Dana-Farber Nature Immunology Scripps metabolic disorder weight gain

More articles from Health and Medicine:

nachricht Neutrons produce first direct 3D maps of water during cell membrane fusion
21.09.2018 | DOE/Oak Ridge National Laboratory

nachricht Narcolepsy, scientists unmask the culprit of an enigmatic disease
20.09.2018 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

 
Latest News

Astrophysicists measure precise rotation pattern of sun-like stars for the first time

21.09.2018 | Physics and Astronomy

Brought to light – chromobodies reveal changes in endogenous protein concentration in living cells

21.09.2018 | Life Sciences

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

VideoLinks
Science & Research
Overview of more VideoLinks >>>