Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scripps Florida Scientists Identify Neurotranmitters that Lead to Forgetting

10.05.2012
While we often think of memory as a way of preserving the essential idea of who we are, little thought is given to the importance of forgetting to our wellbeing, whether what we forget belongs in the “horrible memories department” or just reflects the minutia of day-to-day living.
Despite the fact that forgetting is normal, exactly how we forget—the molecular, cellular, and brain circuit mechanisms underlying the process—is poorly understood.

Now, in a study that appears in the May 10, 2012 issue of the journal Neuron, scientists from the Florida campus of The Scripps Research Institute have pinpointed a mechanism that is essential for forming memories in the first place and, as it turns out, is equally essential for eliminating them after memories have formed.

“This study focuses on the molecular biology of active forgetting,” said Ron Davis, chair of the Scripps Research Department of Neuroscience who led the project. “Until now, the basic thought has been that forgetting is mostly a passive process. Our findings make clear that forgetting is an active process that is probably regulated.”

The Two Faces of Dopamine

To better understand the mechanisms for forgetting, Davis and his colleagues studied Drosophila or fruit flies, a key model for studying memory that has been found to be highly applicable to humans. The flies were put in situations where they learned that certain smells were associated with either a positive reinforcement like food or a negative one, such as a mild electric shock. The scientists then observed changes in the flies’ brains as they remembered or forgot the new information.

The results showed that a small subset of dopamine neurons actively regulate the acquisition of memories and the forgetting of these memories after learning, using a pair of dopamine receptors in the brain. Dopamine is a neurotransmitter that plays an important role in a number of processes including punishment and reward, memory, learning and cognition.

But how can a single neurotransmitter, dopamine, have two seemingly opposite roles in both forming and eliminating memories? And how can these two dopamine receptors serve acquiring memory on the one hand, and forgetting on the other?

The study suggests that when a new memory is first formed, there also exists an active, dopamine-based forgetting mechanism—ongoing dopamine neuron activity—that begins to erase those memories unless some importance is attached to them, a process known as consolidation that may shield important memories from the dopamine-driven forgetting process.

The study shows that specific neurons in the brain release dopamine to two different receptors known as dDA1 and DAMB, located on what are called mushroom bodies because of their shape; these densely packed networks of neurons are vital for memory and learning in insects. The study found the dDA1 receptor is responsible for memory acquisition, while DAMB is required for forgetting.

When dopamine neurons begin the signaling process, the dDA1 receptor becomes overstimulated and begins to form memories, an essential part of memory acquisition. Once that memory is acquired, however, these same dopamine neurons continue signaling. Except this time, the signal goes through the DAMB receptor, which triggers forgetting of those recently acquired, but not yet consolidated, memories.

Jacob Berry, a graduate student in the Davis lab who led the experimentation, showed that inhibiting the dopamine signaling after learning enhanced the flies’ memory. Hyperactivating those same neurons after learning erased memory. And, a mutation in one of the receptors, dDA1, produced flies unable to learn, while a mutation in the other, DAMB, blocked forgetting.

Intriguing Issues

While Davis was surprised by the mechanisms the study uncovered, he was not surprised that forgetting is an active process. “Biology isn’t designed to do things in a passive way,” he said. “There are active pathways for constructing things, and active ones for degrading things. Why should forgetting be any different?”

The study also brings into a focus a lot of intriguing issues, Davis said—savant syndrome, for example.

“Savants have a high capacity for memory in some specialized areas,” he said. “But maybe it isn’t memory that gives them this capacity, maybe they have a bad forgetting mechanism. This also might be a strategy for developing drugs to promote cognition and memory—what about drugs that inhibit forgetting as cognitive enhancers?”

In addition to Davis and Berry, authors of the paper “Dopamine is required for Learning and Forgetting in Drosophila” include Isaac Cervantes-Sandoval and Eric P. Nicholas, also of Scripps Research. See http://www.cell.com/neuron/abstract/S0896-6273(12)00338-8

The study was supported by the National Institutes of Health.

About The Scripps Research Institute

The Scripps Research Institute is one of the world's largest independent, not-for-profit organizations focusing on research in the biomedical sciences. Over the past decades, Scripps Research has developed a lengthy track record of major contributions to science and health, including laying the foundation for new treatments for cancer, rheumatoid arthritis, hemophilia, and other diseases. The institute employs about 3,000 people on its campuses in La Jolla, CA, and Jupiter, FL, where its renowned scientists—including three Nobel laureates—work toward their next discoveries. The institute's graduate program, which awards Ph.D. degrees in biology and chemistry, ranks among the top ten of its kind in the nation. For more information, see www.scripps.edu.
For information:
Office of Communications
Tel: 858-784-8134
Fax: 858-784-8136
press@scripps.edu

Mika Ono | EurekAlert!
Further information:
http://www.scripps.edu

More articles from Health and Medicine:

nachricht Inselspital: Fewer CT scans needed after cerebral bleeding
20.03.2019 | Universitätsspital Bern

nachricht Building blocks for new medications: the University of Graz is seeking a technology partner
19.03.2019 | Karl-Franzens-Universität Graz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>