Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists uncover nuclear process in the brain that may affect disease

18.08.2015

NIH-funded study highlights the possible role of glial brain cells in neurological disorders

Every brain cell has a nucleus, or a central command station. Scientists have shown that the passage of molecules through the nucleus of a star-shaped brain cell, called an astrocyte, may play a critical role in health and disease. The study, published in the journal Nature Neuroscience, was partially funded by the National Institutes of Health (NIH).


Scientists discovered that nuclear pores in astrocytes may play important roles in the brain.

Courtesy of Akassoglou lab, Gladstone Institute

"Unexpectedly we may have discovered a hidden pathway to understanding how astrocytes respond to injury and control brain processes. The pathway may be common to many brain diseases and we're just starting to follow it," said Katerina Akassoglou, Ph.D., a senior investigator at the Gladstone Institute for Neurological Disease, a professor of neurology at the University of California, San Francisco, and a senior author of the study.

Some neurological disorders are associated with higher than normal brain levels of the growth factor TGF-beta, including Alzheimer's disease and brain injury. Previous studies found that after brain injury, astrocytes produce greater amounts of p75 neurotrophin receptor (p75NTR), a protein that helps cells detect growth factors. The cells also react to TGF-beta by changing their shapes and secreting proteins that alter neuronal activity.

Dr. Akassoglou's lab showed that eliminating the p75NTR gene prevented hydrocephalus in mice genetically engineered to have astrocytes that produce higher levels of TGF-beta. Hydrocephalus is a disorder that fills the brain with excess cerebral spinal fluid. Eliminating the p75NTR gene also prevented astrocytes in the brains of the mice from forming scars after injuries and restored gamma oscillations, which are patterns of neuronal activity associated with learning and memory.

The cell nucleus is a ball of chromosomes wrapped in a protective fatty membrane. In this study, the researchers discovered that treating astrocytes with TGF-beta freed a small piece of the p75NTR protein to bind to nucleoporins, a group of proteins that regulates the passage of molecules in and out of the nucleus. Their results suggest that binding enhances the flow of certain critical molecules into the nucleus and enables astrocytes to enter a reactive state.

"This research highlights the importance of the nuclear pore complex in the brain and raises the possibility that it may be a target for treating a wide range of neurological disorders," said Jill Morris, Ph.D., program director at the NIH's National Institute of Neurological Disorders and Stroke (NINDS).

The scientists used high-resolution microscopes to watch the astrocyte nucleus in action. Nuclear pores that did not have the p75NTR gene were slightly larger than normal. When the scientists treated astrocytes with TGF-beta, they saw p75NTR proteins bind to nucleoporins and open the pores. This allowed transport into the nucleus of a protein called Smad2, which is essential for TGF-beta to exert its effects on astrocytes. In other experiments, the scientists showed that eliminating p75NTR from astrocytes blocked the transport of Smad2 into the nucleus.

"Nuclear pores are gatekeepers and p75NTR appears to be the key to unlocking particular gates," said Dr. Akassoglou. "We discovered novel roles for both players and will continue to study how the nuclear pore complex controls neuronal development and disease."

###

This work was supported by grants from NIH (NS051470, NS052189, NS066361, NS082976, AG047313, GM103412, RR004050), European Commission (FP7 PIRG08-GA-2010-276989), German Research Foundation (SCHA 1442/3-2), US National Multiple Sclerosis Society, American Heart Association, German Academic Exchange Service.

References:

Schachtrup et al. "Nuclear pore complex remodeling by p75NTR cleavage controls TGF-β signaling and astrocyte functions," Nature Neuroscience, June 29, 2015. DOI: 10.1038/nn.4054

For more information, visit: http://www.ninds.nih.gov

NINDS is the nation's leading funder of research on the brain and nervous system. The mission of NINDS is to seek fundamental knowledge about the brain and nervous system and to use that knowledge to reduce the burden of neurological disease.

About the National Institute on Aging: The NIA leads the federal government effort conducting and supporting research on aging and the health and well-being of older people. It provides information on age-related cognitive change and neurodegenerative disease specifically at its Alzheimer's Disease Education and Referral (ADEAR) Center at http://www.nia.nih.gov/Alzheimers. Information on health and on aging generally can be found at http://www.nia.nih.gov.

The National Institute of General Medical Sciences (NIGMS) supports basic research that increases understanding of biological processes and lays the foundation for advances in disease diagnosis, treatment and prevention. NIGMS-funded scientists investigate how living systems work at a range of levels, from molecules and cells to tissues, whole organisms and populations. The Institute also supports research in certain clinical areas, primarily those that affect multiple organ systems. To assure the vitality and continued productivity of the research enterprise, NIGMS provides leadership in training the next generation of scientists, in enhancing the diversity of the scientific workforce, and in developing research capacities throughout the country. More information about NIGMS can be found at http://www.nigms.nih.gov/Pages/default.aspx.

About the National Institutes of Health (NIH): NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit http://www.nih.gov.

Media Contact

Christopher G. Thomas
nindspressteam@ninds.nih.gov
301-496-5751

 @NINDSnews

http://www.ninds.nih.gov 

Christopher G. Thomas | EurekAlert!

More articles from Health and Medicine:

nachricht Deep stimulation improves cognitive control by augmenting brain rhythms
04.04.2019 | Picower Institute at MIT

nachricht Black nanoparticles slow the growth of tumors
04.04.2019 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>