Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists first to see trafficking of immune cells in beating heart

12.07.2012
Blood flow to the heart often is interrupted during a heart attack or cardiac surgery. But when blood flow resumes, the heart may still falter. That's because collateral damage can occur as blood re-enters the heart, potentially slowing recovery and causing future cardiac troubles.

Researchers investigating this type of secondary heart damage have been stymied by the inability to see in real time how restoring blood flow leads to inflammation that can cause further injury.


Working in mice, scientists at Washington University School of Medicine in St. Louis have used two-photon imaging to capture the first images of a beating heart at a resolution so detailed they can track individual immune cells swarming into the heart, causing inflammation. These immune cells, shown in green, are moving from the blood vessels in the heart into the heart muscle. Credit: Washington University in St. Louis

Now, working in mice, surgeons and scientists at Washington University School of Medicine in St. Louis, have captured the first images of a beating heart at a resolution so detailed they can track individual immune cells swarming into the heart muscle, causing inflammation.

The achievement is detailed in the July issue of the Journal of Clinical Investigation.

The researchers say that the imaging technique, called intravital two-photon imaging, is a powerful tool for understanding the inflammation that occurs when blood flow to the heart is temporarily stopped and later restarted.

"Inflammation is quite common after a heart attack, open-heart surgery, heart transplants and in atherosclerosis, and it can severely hamper recovery and lead to death," says senior author Daniel Kreisel, MD, PhD, a Washington University cardiothoracic surgeon who operates at Barnes-Jewish Hospital. "But little is known about how inflammation ramps up in the heart. Now that we have the ability to see all the cellular players involved, we can begin to think about new therapeutic targets for treatment."

Two-photon imaging has been used to image other organs in living mice but never the heart. Scientists had assumed that the flutter of the beating heart, which pulses about 500 times a minute in a mouse, would blur any images of individual cells.

"No one thought we could get clear images of cells inside the beating heart," says Wenjun Li, MD, research instructor of surgery and co-lead author with Ruben Nava, MD, and Alejandro Bribriesco, MD, both surgical residents at Barnes-Jewish Hospital. "But the images we captured are incredibly rich in detail, right down to the level of single cells. We think the principles underlying inflammation in the mouse heart will be applicable to humans."

One advantage of two-photon microscopy is the ability to penetrate deep into tissue, allowing scientists to image cells in the heart tissue.

Using the technique in mice that had undergone heart transplants or had a blood flow to the heart temporarily interrupted, the researchers saw that within minutes of restoring blood flow, specialized white blood cells, called neutrophils, rushed into the heart. (To see a video of neutrophils, shown in green, swarming into the beating heart of a mouse after a heart transplant, click here.)

Neutrophils are known to be a key driver of inflammation but scientists had never seen the trafficking of immune cells as they move from the circulation into the heart muscle, where the cells formed large clusters that cause tissue damage.

In addition, by blocking neutrophils from blood vessel walls, the researchers could markedly reduce the movement of these cells into the heart, preventing further injury.

Kreisel, Li and their colleagues collaborated with co-senior author Mark Miller, PhD, an assistant professor of pathology and immunology, who pioneered the use of two-photon microscopy for studying the trafficking of white blood cells in living mice. Together, they developed a way to stabilize the beating heart so they could obtain high-quality images of immune cell trafficking.

The same team also has used the technique to image immune cells in mouse lungs, which also move as the mice breathe but not to the same extent as the heart. And other scientists have used two-photon imaging to watch neutrophils travel into the skin, liver and other organs. Surprisingly, the researchers are finding that the trafficking of neutrophils differs from one organ to the next.

"Each organ seems to have its own requirements for signaling and attracting inflammatory cells," says Kreisel, who also is an associate professor of surgery. "It is as if each organ has its own zip code. Now, we have the ability to identify all the cells and signaling molecules that play a part in heart inflammation and can block particular pathways to see if we can prevent organ damage."

Li W, Nava RG, Bribriesco AC, Zinselmeyer BH, Spahn JH, Gelman AE, Krupnick AS, Miller MJ, Kreisel D. Intravital 2-photon imaging of leukocyte trafficking in beating heart. Journal of Clinical Investigation. July 2012.

The research is supported by the National Heart Lung and Blood Institute (1R01HL094601) and the National Institute of Allergy and Infectious Diseases (AI077600).

Washington University School of Medicine's 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children's hospitals. The School of Medicine is one of the leading medical research, teaching and patient care institutions in the nation, currently ranked sixth in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children's hospitals, the School of Medicine is linked to BJC HealthCare.

Caroline Arbanas | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Health and Medicine:

nachricht Finding new clues to brain cancer treatment
21.02.2020 | Case Western Reserve University

nachricht UIC researchers find unique organ-specific signature profiles for blood vessel cells
18.02.2020 | University of Illinois at Chicago

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: High-pressure scientists in Bayreuth discover promising material for information technology

Researchers at the University of Bayreuth have discovered an unusual material: When cooled down to two degrees Celsius, its crystal structure and electronic properties change abruptly and significantly. In this new state, the distances between iron atoms can be tailored with the help of light beams. This opens up intriguing possibilities for application in the field of information technology. The scientists have presented their discovery in the journal "Angewandte Chemie - International Edition". The new findings are the result of close cooperation with partnering facilities in Augsburg, Dresden, Hamburg, and Moscow.

The material is an unusual form of iron oxide with the formula Fe₅O₆. The researchers produced it at a pressure of 15 gigapascals in a high-pressure laboratory...

Im Focus: From China to the South Pole: Joining forces to solve the neutrino mass puzzle

Study by Mainz physicists indicates that the next generation of neutrino experiments may well find the answer to one of the most pressing issues in neutrino physics

Among the most exciting challenges in modern physics is the identification of the neutrino mass ordering. Physicists from the Cluster of Excellence PRISMA+ at...

Im Focus: Therapies without drugs

Fraunhofer researchers are investigating the potential of microimplants to stimulate nerve cells and treat chronic conditions like asthma, diabetes, or Parkinson’s disease. Find out what makes this form of treatment so appealing and which challenges the researchers still have to master.

A study by the Robert Koch Institute has found that one in four women will suffer from weak bladders at some point in their lives. Treatments of this condition...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Turbomachine expander offers efficient, safe strategy for heating, cooling

25.02.2020 | Power and Electrical Engineering

The seismicity of Mars

25.02.2020 | Earth Sciences

Cancer cachexia: Extracellular ligand helps to prevent muscle loss

25.02.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>