Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists re-create brain neurons to study obesity and personalize treatment

20.04.2018

Technology tested by Cedars-Sinai Provides a new way to understand obesity and potentially evaluate therapies for it

Scientists have re-created brain neurons of obese patients using "disease in a dish" technology, offering a new method to study the brain's role in obesity and possibly help tailor treatments to specific individuals.


Image shows two types of hypothalamic neurons (in magenta and cyan) that were derived from induced pluripotent stem cells as part of a Cedars-Sinai-led study of the brain and obesity.

Credit: Cedars-Sinai Board of Governors Regenerative Medicine Institute

"We have taken the first step in developing a great platform that potentially could be used to evaluate the effects of experimental therapeutics on specific patients," said Dhruv Sareen, PhD, assistant professor of Biomedical Sciences at Cedars-Sinai. "Ultimately, we are paving the way for personalized medicine, in which drugs could be customized for obese patients with different genetic backgrounds and disease statuses."

Sareen is senior author of a study about the findings, which was led by Cedars-Sinai investigators and published today in the journal Cell Stem Cell.

More than one-third of U.S. adults are obese, a condition that puts them at higher risk for heart disease, stroke, diabetes and certain cancers, according to federal statistics. "We wanted to do this study because obesity and related metabolic diseases are global epidemics that are increasing alarmingly each year," Sareen said. "Even more worrying is the increase in childhood obesity, which could have lasting effects on future generations."

The new study focused on the brain's hypothalamus area, which regulates hunger, thirst, body temperature and other functions requiring hormonal control. Some studies have suggested that obesity may result, in part, from genetic mutations in certain hypothalamic neurons. These neurons produce and respond to chemicals that influence metabolism and help the brain and gastrointestinal tract communicate with each other. When these neurons malfunction, an individual may have trouble sensing when they are full and should stop eating, leading to weight gain.

"Understanding how this signaling process works at the cellular level is important in providing much-needed clues for future treatment strategies for obesity," Sareen said. "But the process is difficult to investigate because hypothalamus tissues from living patients are not readily accessible for direct examination."

The new study demonstrates a way around this barrier by using stem-cell technology to reproduce hypothalamic neurons outside the body.

For their study, investigators sampled blood and skin cells from five super-obese individuals and seven individuals of normal weight. Super-obesity was defined as having a body mass index of 50 or higher versus a normal score under 25. The investigators genetically reprogrammed these cells into induced pluripotent stem cells (iPSCs), which can create any type of cell in the body. The iPSCs were coaxed to generate the special hypothalamic neurons. Because of the way they were produced, these "neurons in a dish" matched the genetics of the individual patient who donated the original cells.

When the investigators compared the iPSC-generated neurons of super-obese individuals to those of normal-weight individuals, they found significant differences. The super-obese neurons contained multiple genetic mutations and responded abnormally to several hormones that regulate hunger, satiety and metabolism.

"These findings showed that iPSC technology is a powerful method for studying obesity and how interactions between genes and the environment may influence its development," said Sareen, who directs the Induced Pluripotent Stem Cell Core Facility at the Cedars-Sinai Board of Governors Regenerative Medicine Institute. "We reliably and efficiently differentiated multiple iPSCs into hypothalamic neurons and, using sophisticated gene expression and statistical techniques, showed these neurons are similar to human hypothalamic tissues."

He added there are several intermediate steps before the full potential of the method can be realized.

Uthra Rajamani, PhD, a Cedars-Sinai research scientist and the study's first author, said one limitation of the study's findings is that in the body the special hypothalamic neurons communicate with other centers of the brain, as well as the gut, liver, pancreas and other organs. This integration is difficult to reproduce in a dish using only one type of cell.

"In future studies, we would like to show functional communication between iPSC-generated hypothalamic neurons and other relevant cell types, and also create relevant human circuitry in a dish--where these neurons can communicate with other organs as they do in a human body," Rajamani said.

###

Besides Sareen and Rajamani, the study team included Cedars-Sinai investigators from the Genomics Core, the Metabolism and Mitochondrial Research Core and the Smidt Heart Institute; and from University of California, Irvine.

The Cell Stem Cell study is part of the Cedars-Sinai Precision Health initiative, whose goal is to drive the development of the newest technology and best research, coupled with the finest clinical practice, to rapidly enable a new era of personalized health.

Funding: Research reported in this publication was supported by Cedars-Sinai institutional programmatic funds and the National Center for Advancing Translational Science of the National Institutes of Health under UCLA CTSI award number UL1TR000124.

Media Contact

Jane Engle
Jane.Engle@cshs.org
310-248-8545

 @cedarssinai

http://www.csmc.edu 

Jane Engle | EurekAlert!

More articles from Health and Medicine:

nachricht New nanomedicine slips through the cracks
24.04.2019 | University of Tokyo

nachricht Sugar entering the brain during septic shock causes memory loss
23.04.2019 | Rensselaer Polytechnic Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Full speed ahead for SmartEEs at Automotive Interiors Expo 2019

Flexible, organic and printed electronics conquer everyday life. The forecasts for growth promise increasing markets and opportunities for the industry. In Europe, top institutions and companies are engaged in research and further development of these technologies for tomorrow's markets and applications. However, access by SMEs is difficult. The European project SmartEEs - Smart Emerging Electronics Servicing works on the establishment of a European innovation network, which supports both the access to competences as well as the support of the enterprises with the assumption of innovations and the progress up to the commercialization.

It surrounds us and almost unconsciously accompanies us through everyday life - printed electronics. It starts with smart labels or RFID tags in clothing, we...

Im Focus: Energy-saving new LED phosphor

The human eye is particularly sensitive to green, but less sensitive to blue and red. Chemists led by Hubert Huppertz at the University of Innsbruck have now developed a new red phosphor whose light is well perceived by the eye. This increases the light yield of white LEDs by around one sixth, which can significantly improve the energy efficiency of lighting systems.

Light emitting diodes or LEDs are only able to produce light of a certain colour. However, white light can be created using different colour mixing processes.

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

High-efficiency thermoelectric materials: New insights into tin selenide

25.04.2019 | Materials Sciences

Salish seafloor mapping identifies earthquake and tsunami risks

25.04.2019 | Earth Sciences

Using DNA templates to harness the sun's energy

25.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>