Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Gain New Understanding of Alzheimer's Trigger

04.05.2012
A highly toxic beta-amyloid – a protein that exists in the brains of Alzheimer's disease victims – has been found to greatly increase the toxicity of other more common and less toxic beta-amyloids, serving as a possible "trigger" for the advent and development of Alzheimer's, researchers at the University of Virginia and German biotech company Probiodrug have discovered.

The finding, reported in the May 2 online edition of the journal Nature, could lead to more effective treatments for Alzheimer's. Already, Probiodrug AG, based in Halle, Germany has completed phase 1 clinical trials in Europe with a small molecule that inhibits an enzyme, glutaminyl cyclase, that catalyzes the formation of this hypertoxic version of beta-amyloid.

"This form of beta-amyloid, called pyroglutamylated (or pyroglu) beta-amyloid, is a real bad guy in Alzheimer's disease," said principal investigator George Bloom, a U.Va. professor of biology and cell biology in the College of Arts & Sciences and School of Medicine, who is collaborating on the study with scientists at Probiodrug. "We've confirmed that it converts more abundant beta-amyloids into a form that is up to 100 times more toxic, making this a very dangerous killer of brain cells and an attractive target for drug therapy."

Bloom said the process is similar to various prion diseases, such as mad cow disease or chronic wasting disease, where a toxic protein can "infect" normal proteins that spread through the brain and ultimately destroy it.

In the case of Alzheimer's, severe dementia occurs over the course of years prior to death.

"You might think of this pyroglu beta-amyloid as a seed that can further contaminate something that's already bad into something much worse – it's the trigger," Bloom said. Just as importantly, the hypertoxic mixtures that are seeded by pyroglu beta-amyloid exist as small aggregates, called oligomers, rather than as much larger fibers found in the amyloid plaques that are a signature feature of the Alzheimer's brain.

And the trigger fires a "bullet," as Bloom puts it. The bullet is a protein called tau that is stimulated by beta-amyloid to form toxic "tangles" in the brain that play a major role in the onset and development of Alzheimer's. Using mice bred to have no tau genes, the researchers found that without the interaction of toxic beta-amyloids with tau, the Alzheimer's cascade cannot begin. The pathway by which pyroglu beta-amyloid induces the tau-dependent death of neurons is now the target of further investigation to understand this important step in the early development of Alzheimer's disease

"There are two matters of practical importance in our discovery," Bloom said. "One, is the new insights we have as to how Alzheimer's might actually progress – the mechanisms which are important to understand if we are to try to prevent it from happening; and second, it provides a lead into how to design drugs that might prevent this kind of beta-amyloid from building up in the first place."

Said study co-author Hans-Ulrich Demuth, a biochemist and chief scientific officer at Probiodrug, "This publication further adds significant evidence to our hypothesis about the critical role pyroglu beta-amyloid plays in the initiation of Alzheimer's Disease. For the first time we have found a clear link in the relationship between pyroglu beta-amyloid, oligomer formation and tau protein in neuronal toxicity."

Bloom and his collaborators are now looking for other proteins that are needed for pyroglu beta-amyloid to become toxic. Any such proteins they discover are potential targets for the early diagnosis and/or treatment of Alzheimer's disease.

Fariss Samarrai | Newswise Science News
Further information:
http://www.virginia.edu

More articles from Health and Medicine:

nachricht Diabetes mellitus: A risk factor for early colorectal cancer
27.05.2020 | Nationales Centrum für Tumorerkrankungen (NCT) Heidelberg

nachricht Ultra-thin fibres designed to protect nerves after brain surgery
27.05.2020 | Martin-Luther-Universität Halle-Wittenberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Black nitrogen: Bayreuth researchers discover new high-pressure material and solve a puzzle of the periodic table

29.05.2020 | Materials Sciences

Argonne researchers create active material out of microscopic spinning particles

29.05.2020 | Materials Sciences

Smart windows that self-illuminate on rainy days

29.05.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>