Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists find new approach that shows promise for treating cystic fibrosis

14.03.2019

NIH-funded discovery uses common antifungal drug to improve lungs' ability to fight infection

Researchers say a widely-used antifungal drug may hold promise for treating people with cystic fibrosis, a life-threatening genetic disorder that causes serious damage to the lungs.


This illustration depicts a microscopic view of the lining of the lung surface of a person with cystic fibrosis (CF). In people with CF, a protein that releases bicarbonate, a key infection-fighting agent (represented by red spheres), is missing or defective (brown ribbon structure). The drug amphotericin (white structure) can form channels to release bicarbonate in lung tissue, restoring the antibiotic properties of the airway surface liquid, the thin layer of fluid covering the surface of the lungs that plays a key role in maintaining lung health.

Credit: Rebecca Schultz, Carle Illinois College of Medicine

In studies using human cells and animals models, the researchers found that the medication, called amphotericin, helps lung cells function in a way that could make it easier for patients to fight chronic bacterial lung infections that are a hallmark of the disease.

The findings from the study, which was supported in part by the National Heart, Lung, and Blood Institute (NHLBI), part of the National Institutes of Health, will appear in the journal Nature.

If human studies validate the findings, the use of the drug could be good news to the more than 30,000 people in the United States and 70,000 worldwide who live with cystic fibrosis, a disease with no cure and few treatment options. It holds special promise for a subset of patients, about 10 percent of the people with cystic fibrosis, who do not respond to any treatment.

"The really exciting news is that amphotericin is a medicine that's already approved and available on the market," said Martin D. Burke, M.D., Ph.D., leader of the study and a professor of chemistry at the University of Illinois in Champaign. "We think it's a good candidate."

Cystic fibrosis is caused by a defect in a gene called CFTR (cystic fibrosis transmembrane conductance regulator). This gene normally makes a protein that controls or channels the movement in and out of cells of such materials as salt, bicarbonate, and water--all of which are important to normal lung function.

In people with cystic fibrosis, however, the defective gene makes a protein that is itself defective, causing the accumulation of acidic and sticky mucus that not only clogs the lungs and makes it hard to breathe, but also makes the lungs vulnerable to bacterial infection.

While some treatments are currently available, they are limited because different people have different types of mutated proteins, and because 10 percent of people with cystic fibrosis make no protein at all. But amphotericin, Burke said, has the potential to work regardless of the kind of mutation, and even when the protein is missing.

"Instead of trying to correct the protein or do gene therapy - the latter of which is not yet effective in the lung - we use a small molecule surrogate that can perform the channel function of the missing or defective protein," Burke said. The researchers call this surrogate--the amphotericin-- a "molecular prosthetic," because it restores function much like a prosthetic device does when it replaces a limb.

In their studies, the researchers used lung tissue from patients with cystic fibrosis, as well as pig models of cystic fibrosis, and found that amphotericin spurred a host of changes associated with improved lung function--restoration of pH levels, improved viscosity, and increased antibacterial activity, among others.

The researchers noted that amphotericin can be delivered directly to the lungs to avoid common side effects. They cautioned that more experimental studies are needed before the drug is safe to treat cystic fibrosis in people. But experts are hopeful.

"The cystic fibrosis community is truly in need of new therapies to reduce the burden of this disease. We are interested to see how this potential treatment performs in clinical trials in the future," said James Kiley, Ph.D., director of the Division of Lung Diseases at the NHLBI.

###

This work was supported in part by the National Heart, Lung, and Blood Institute (NHLBI grant HL091842) and the National Institute of General Medical Sciences (NIGMS grant 5R35GM118185). Both are part of the National Institutes of Health. The study was also supported by additional institutions outside of NIH. For a more complete funding disclosure, please see the full research article.

Study: Burke, M. et al. Small-molecule ion channels increase host defences in cystic fibrosis airway epithelia. https://www.nature.com/articles/s41586-019-1018-5

EDITOR'S NOTE: This year marks the 50th anniversary of the founding of the NHLBI's Division of Lung Diseases.

About the National Heart, Lung, and Blood Institute (NHLBI): NHLBI is the global leader in conducting and supporting research in heart, lung, and blood diseases and sleep disorders that advances scientific knowledge, improves public health, and saves lives. For more information, visit http://www.nhlbi.nih.gov.

About the National Institutes of Health (NIH): NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit http://www.nih.gov.

NIH...Turning Discovery Into Health

Media Contact

NHLBI Engagement and Media Relations Branch
nhlbi_news@nhlbi.nih.gov
301-496-5449

http://www.nhlbi.nih.gov 

NHLBI Engagement and Media Relations Branch | EurekAlert!

Further reports about: NHLBI cystic fibrosis fibrosis medical research

More articles from Health and Medicine:

nachricht Lab grown ‘brains’ successfully model disease
13.03.2019 | Max-Planck-Institut für Psychiatrie

nachricht Balancing the gut – how the immune system maintains a healthy gut microbiota
26.02.2019 | Exzellenzcluster Präzisionsmedizin für chronische Entzündungserkrankungen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

Im Focus: Sensing shakes

A new way to sense earthquakes could help improve early warning systems

Every year earthquakes worldwide claim hundreds or even thousands of lives. Forewarning allows people to head for safety and a matter of seconds could spell...

Im Focus: A thermo-sensor for magnetic bits

New concept for energy-efficient data processing technology

Scientists of the Department of Physics at the University of Hamburg, Germany, detected the magnetic states of atoms on a surface using only heat. The...

Im Focus: The moiré patterns of three layers change the electronic properties of graphene

Combining an atomically thin graphene and a boron nitride layer at a slightly rotated angle changes their electrical properties. Physicists at the University of Basel have now shown for the first time the combination with a third layer can result in new material properties also in a three-layer sandwich of carbon and boron nitride. This significantly increases the number of potential synthetic materials, report the researchers in the scientific journal Nano Letters.

Last year, researchers in the US caused a big stir when they showed that rotating two stacked graphene layers by a “magical” angle of 1.1 degrees turns...

Im Focus: Binding with consequences

Researchers from Freiburg and Ulm discover mechanism through which bacteria attack white blood cells

A research team led by Prof. Dr. Winfried Römer and Dr. Elias Hobeika from the University of Freiburg and the University Medical Center in Ulm has discovered a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Touchscreens go 3D with buttons that pulsate and vibrate under your fingertips

14.03.2019 | Information Technology

DFKI presents a new generation of autonomous space robots at the Hannover Messe 2019

14.03.2019 | Trade Fair News

Astronomers discover 83 supermassive black holes in the early universe

14.03.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>