Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists find a new mechanism underlying depression

08.01.2014
Hebrew University research could lead to efficient and fast-acting antidepressant drugs

The World health Organization calls depression "the leading cause of disability worldwide," causing more years of disability than cancer, HIV/AIDS, and cardiovascular and respiratory diseases combined. In any given year, 5-7% of the world's population experiences a major depressive episode, and one in six people will at some point suffer from the disease.


Hebrew University scientist Prof. Raz Yirmiya: “This suggests new avenues for drug research, in which microglia stimulators could serve as fast-acting antidepressants in some forms of depressive and stress-related conditions.” (Photo courtesy Prof. Yirmiya)

Despite recent progress in understanding depression, scientists still don't understand the biological mechanisms behind it well enough to deliver effective prevention and therapy. One possible reason is that almost all research focuses on the brain's neurons, while the involvement of other brain cells has not been thoroughly examined.

Now researchers at the Hebrew University of Jerusalem have shown that changes in one type of non-neuronal brain cells, called microglia, underlie the depressive symptoms brought on by exposure to chronic stress. In experiments with animals, the researchers were able to demonstrate that compounds that alter the functioning of microglia can serve as novel and efficient antidepressant drugs.

The findings were published in Molecular Psychiatry, the premier scientific journal in psychiatry and one of the leading journals in medicine and the neurosciences. (See Dynamic microglial alterations underlie stress-induced depressive-like behavior and suppressed neurogenesis).

The research was conducted by Prof. Raz Yirmiya, director of the Hebrew University's Psychoneuroimmunology Laboratory, and his doctoral student Tirzah Kreisel, together with researchers at Prof. Yirmiya’s laboratory and at the University of Colorado in Boulder, USA.

The researchers examined the involvement of microglia brain cells in the development of depression following chronic exposure to stress. Comprising roughly 10% of brain cells, microglia are the representatives of the immune system in the brain; but recent studies have shown that these cells are also involved in physiological processes not directly related to infection and injury, including the response to stress.

The researchers mimicked chronic unpredictable stress in humans — a leading causes of depression — by exposing mice to repeated, unpredictable stressful conditions over a period of 5 weeks. The mice developed behavioral and neurological symptoms mirroring those seen in depressed humans, including a reduction in pleasurable activity and in social interaction, as well as reduced generation of new brain cells (neurogenesis) — an important biological marker of depression.

The researchers found that during the first week of stress exposure, microglia cells undergo a phase of proliferation and activation, reflected by increased size and production of specific inflammatory molecules, after which some microglia begin to die. Following the 5 weeks of stress exposure, this phenomenon led to a reduction in the number of microglia, and to a degenerated appearance of some microglia cells, particularly in a specific region of the brain involved in responding to stress.

When the researchers blocked the initial stress-induced activation of microglia with drugs or genetic manipulation, they were able to stop the subsequent microglia cell death and decline, as well as the depressive symptoms and suppressed neurogenesis. However, these treatments were not effective in "depressed" mice, which were already exposed to the 5-weeks stress period and therefore had lower number of microglia. Based on these findings, the investigators treated the "depressed" mice with drugs that stimulated the microglia and increased their number to a normal level.

Prof. Yirmiya said, “We were able to demonstrate that such microglia-stimulating drugs served as effective and fast-acting antidepressants, producing complete recovery of the depressive-like behavioral symptoms, as well as increasing the neurogenesis to normal levels within a few days of treatment. In addition to the clinical importance of these results, our findings provide the first direct evidence that in addition to neurons, disturbances in the functioning of brain microglia cells have a role in causing psychopathology in general, and depression in particular. This suggests new avenues for drug research, in which microglia stimulators could serve as fast-acting antidepressants in some forms of depressive and stress-related conditions.”

The Hebrew University’s technology transfer company, Yissum, has applied for a patent for the treatment of some forms of depression by several specific microglia-stimulating drugs.

For more information:
Dov Smith
Hebrew University Foreign Press Liaison
02-5882844 / 054-8820860 (+972-54-8820860)
dovs@savion.huji.ac.il

Dov Smith | Hebrew University
Further information:
http://www.huji.ac.il

More articles from Health and Medicine:

nachricht Spread of deadly eye cancer halted in cells and animals
13.11.2018 | Johns Hopkins Medicine

nachricht Breakthrough in understanding how deadly pneumococcus avoids immune defenses
13.11.2018 | University of Liverpool

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

How algae and carbon fibers could sustainably reduce the athmospheric carbon dioxide concentration

14.11.2018 | Life Sciences

NIH scientists illuminate causes of hepatitis b virus-associated acute liver failure

14.11.2018 | Life Sciences

The unintended consequences of dams and reservoirs

14.11.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>