Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover likely new trigger for epidemic of metabolic syndrome

23.02.2012
UC Davis scientists have uncovered a key suspect in the destructive inflammation that underlies heart disease and diabetes.

The new research shows elevated levels of a receptor present on leucocytes of the innate immune response in people at risk for these chronic diseases. The receptors are the body's first line of defense against infectious invaders, and they trigger a rush of cytokines, the body's aggressive immune soldiers, into the bloodstream.

The research, published in the journal Diabetes Care on Feb. 22, studied individuals diagnosed with metabolic syndrome -- a cluster of cardio-metabolic risk factors linked to many life-threatening diseases. Metabolic syndrome is found in about a third of American adults and people in other industrialized countries.

The syndrome is a high-risk obesity state as previously shown by diabetes expert Ishwarlal Jialal and his team at the UC Davis Medical Center. It increases the risk of developing diabetes at least five-fold and heart disease by two- to four-fold. Jialal, professor of pathology and laboratory medicine at UC Davis Health System, also led the new study.

The receptors, or sensors, on cells are called Toll-like receptors (TLRs), and the Nobel Prize was awarded last year for discoveries that showed they initiate the swift innate immune response to infections. But the inflammation they trigger can also be harmful. In mice it has been shown that two TLRs -- TLR2 AND TLR4 -- are important in the development of both diabetes and heart disease.

These receptors are present in many cells, but they are most abundant on monocytes, a type of white blood cell that plays a central role in the inflammation response to invading microbes. They can be triggered by pathogen products or signals from dying cells and saturated fatty acid.

The UC Davis research focused on TLR2 and TLR4. For the study, researchers evaluated 90 individuals between the ages of 21 and 70, of whom 49 had at least three features characteristic of metabolic syndrome. These included hypertension, low HDL-cholesterol, high triglycerides and obesity, as evidenced by increased waist circumference, or a glucose level between 101-125 mg/dl but not indicative of diabetes. Members of the control group had no more than two such markers. People with atherosclerosis, diabetes, inflammatory or malignant disease, and other disorders were excluded to study the receptor function without confounding variables, and to gain insights into nascent or early metabolic syndrome prior to complications.

Comparisons of the blood of participants from both groups showed that the metabolic syndrome group exhibited significantly higher levels of both messenger RNA and cell-surface receptor proteins TLR2 and TLR4, increased levels of the master switch of inflammation in the nucleus, and a much higher concentration of immune soldiers in the blood, such as cytokines, that create inflammation.

All of these abnormalities were independent of obesity, suggesting they are due to the metabolic-syndrome environment. The levels of both free fatty acids and the product of gram-negative bacteria endotoxin also were increased in the blood of individuals with metabolic syndrome at least two- and three-fold respectively, and explained in part the TLR4 increase.

The research suggests that suppressing TLR activity with weight loss and with diet, exercise and drugs targeted specifically at these receptors, might prove effective in treating heart disease, diabetes and other conditions linked to metabolic syndrome.

Jialal pointed out that not all obese people suffer from the constellation of symptoms that make up metabolic syndrome, and in fact, about 30 percent of obese people are at low risk for metabolic complications, according to one key study. But since research shows increased inflammation in obese people, the Toll-like receptor and monocyte findings may help define individuals at high risk for obesity.

Jialal's research group reported last year that monocytes and related macrophages were present in the fat of individuals with metabolic syndrome and that their fat was more inflamed. The new finding shows that the Toll-like sentinel proteins might be directing an increase in this activity, and that the inflammatory agents are making it into the bloodstream, from where they can go to any part of the body, including fat, liver and heart.

The research is funded by the American Diabetes Association.

UC Davis Health System is improving lives and transforming health care by providing excellent patient care, conducting groundbreaking research, fostering innovative, interprofessional education, and creating dynamic, productive partnerships with the community. The academic health system includes one of the country's best medical schools, a 631-bed acute-care teaching hospital, an 800-member physician's practice group and the new Betty Irene Moore School of Nursing. It is home to a National Cancer Institute-designated cancer center, an international neurodevelopmental institute, a stem cell institute and a comprehensive children's hospital. Other nationally prominent centers focus on advancing telemedicine, improving vascular care, eliminating health disparities and translating research findings into new treatments for patients. Together, they make UC Davis a hub of innovation that is transforming health for all. For more information, visit healthsystem.ucdavis.edu.

Carole Gan | EurekAlert!
Further information:
http://www.healthsystem.ucdavis.edu

More articles from Health and Medicine:

nachricht Study tracks inner workings of the brain with new biosensor
16.08.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Foods of the future
15.08.2018 | Georg-August-Universität Göttingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Air pollution leads to cardiovascular diseases

21.08.2018 | Ecology, The Environment and Conservation

Researchers target protein that protects bacteria's DNA 'recipes'

21.08.2018 | Life Sciences

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>