Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover the basics of how pressure-sensing Piezo proteins work

22.08.2019

A team of scientists from Weill Cornell Medicine and The Rockefeller University has illuminated the basic mechanism of Piezo proteins, which function as sensors in the body for mechanical stimuli such as touch, bladder fullness, and blood pressure. The discovery is a feat of basic science that also opens up many new paths of investigation into the roles of Piezo proteins in human diseases and potential new therapeutic strategies.

In the study, published Aug. 21 in Nature, the scientists used advanced microscopy techniques to image the Piezo1 protein at rest and during the application of mechanical forces. They confirmed this complex protein's structure and showed essentially how it can convert mechanical stimuli into an electrical signal.


Composite of a cryo-electron microscopy image showing lipid vesicles with embedded Piezo channels, and the Piezo channel structure (top). Topographic image of a single Piezo channel under force as recorded by high-speed atomic force microscopy (circle) and its lateral expansion in the membrane as a function of applied force (right).

Credit: Dr. Simon Scheuring

"Our analysis shows that tension on the cell membrane in which Piezo1 is embedded can flatten and widen the protein's structure," said co-senior author Dr. Simon Scheuring, a professor of physiology and biophysics in anesthesiology at Weill Cornell Medicine.

Dr. Scheuring and his laboratory collaborated on the study with the laboratory of Dr. Roderick MacKinnon, a professor of molecular neurobiology and biophysics at The Rockefeller University. Dr. MacKinnon was co-recipient of the Nobel Prize in Chemistry in 2003 for his work determining the structures and mechanisms of ion channel proteins.

Piezo1 and Piezo2 are very large and complex proteins with unique structures. They are embedded within the membranes of certain cell types, and their function is to transduce mechanical force on cells into electrical signals that alter cell activity.

Piezo1 proteins work for example in bladder cells to detect when the bladder is full, and in blood vessel-lining cells to detect and help regulate changes in blood pressure. Piezo2 proteins work in sensory nerve endings in the skin and joints, helping to mediate the senses of touch, pain, and proprioception--the sense of how one's limbs are arranged.

Advances in imaging techniques have enabled scientists in recent years to determine the basic structure of Piezo1--a structure that Piezo2 is thought to mostly share. From above this structure has a three-armed, propeller or "triskelion" appearance.

From the side it looks like a shallow bowl embedded in the cell membrane, with an ion channel at its center. The latter, when opened, allows a flow of calcium and other positively charged ions into the cell.

The basic mechanism by which mechanical force opens the ion channel has remained mysterious. But in the new study Dr. Scheuring and Dr. MacKinnon and their colleagues, including lead author Dr. Yi-Chih Lin, a postdoctoral associate in anesthesiology, were able to get a clearer picture of how it works.

They combined cryo-electron microscopy with a less well-known technique called high-speed atomic force microscopy, which produces an image of an object essentially by feeling its surface with a super-sensitive mechanical probe.

They showed with these methods that Piezo1 is a springy structure that normally bends the cell membrane where it sits, but will flatten out when, for example, a mechanical force is applied to the cell membrane.

"As the membrane tension increases, the structure of Piezo1 flattens and stretches out to occupy a larger area, which in turn opens the ion channel," Dr. Scheuring said.

He noted the possibility that other stimuli that stretch and flatten the Piezo1 structure, such as a pulling force on its arms from the inside or on an external domain called the CED from the outside the cell, in principle could open the ion channel--making it a suitably versatile mechanism for the wide range of cell types and physiological functions in which it works.

Moreover, given this wide range of cell types--in organs including the lungs, bladder, intestines, and pancreas, as well as in blood vessels and the sensory nervous system--the discovery of the basic Piezo-protein mechanism could lead to new ways of understanding and treating many human diseases.

To take one example, Dr. Scheuring said, if the membranes of cells lining blood vessels contain excess cholesterol they would become stiffer, increasing the background tension on embedded Piezo 1 proteins and potentially disrupting these proteins' normal ability to detect and help regulate blood pressure.

"Our finding leads to a great many predictions about Piezo proteins' roles in disease that we and others can now go and investigate," he said.

Media Contact

Krystle Lopez
krl2003@med.cornell.edu
646-962-9516

 @WeillCornell

http://weill.cornell.edu/ 

Krystle Lopez | EurekAlert!
Further information:
https://news.weill.cornell.edu/news/2019/08/scientists-discover-the-basics-of-how-pressure-sensing-piezo-proteins-work
http://dx.doi.org/10.1038/s41586-019-1499-2

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The working of a molecular string phone

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Potsdam (both in Germany) and the University of Toronto (Canada) have pieced together a detailed time-lapse movie revealing all the major steps during the catalytic cycle of an enzyme. Surprisingly, the communication between the protein units is accomplished via a water-network akin to a string telephone. This communication is aligned with a ‘breathing’ motion, that is the expansion and contraction of the protein.

This time-lapse sequence of structures reveals dynamic motions as a fundamental element in the molecular foundations of biology.

Im Focus: Milestones on the Way to the Nuclear Clock

Two research teams have succeeded simultaneously in measuring the long-sought Thorium nuclear transition, which enables extremely precise nuclear clocks. TU Wien (Vienna) is part of both teams.

If you want to build the most accurate clock in the world, you need something that "ticks" very fast and extremely precise. In an atomic clock, electrons are...

Im Focus: Graphene sets the stage for the next generation of THz astronomy detectors

Researchers from Chalmers University of Technology have demonstrated a detector made from graphene that could revolutionize the sensors used in next-generation space telescopes. The findings were recently published in the scientific journal Nature Astronomy.

Beyond superconductors, there are few materials that can fulfill the requirements needed for making ultra-sensitive and fast terahertz (THz) detectors for...

Im Focus: Physicists from Stuttgart prove the existence of a supersolid state of matte

A supersolid is a state of matter that can be described in simplified terms as being solid and liquid at the same time. In recent years, extensive efforts have been devoted to the detection of this exotic quantum matter. A research team led by Tilman Pfau and Tim Langen at the 5th Institute of Physics of the University of Stuttgart has succeeded in proving experimentally that the long-sought supersolid state of matter exists. The researchers report their results in Nature magazine.

In our everyday lives, we are familiar with matter existing in three different states: solid, liquid, or gas. However, if matter is cooled down to extremely...

Im Focus: World record for tandem perovskite-CIGS solar cell

A team headed by Prof. Steve Albrecht from the HZB will present a new world-record tandem solar cell at EU PVSEC, the world's largest international photovoltaic and solar energy conference and exhibition, in Marseille, France on September 11, 2019. This tandem solar cell combines the semiconducting materials perovskite and CIGS and achieves a certified efficiency of 23.26 per cent. One reason for this success lies in the cell’s intermediate layer of organic molecules: they self-organise to cover even rough semiconductor surfaces. Two patents have been filed for these layers.

Perovskite-based solar cells have experienced an incredibly rapid increase in efficiency over the last ten years. The combination of perovskites with classical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

AI for Laser Technology Conference: optimizing the use of lasers with artificial intelligence

29.08.2019 | Event News

 
Latest News

Low sea-ice cover in the Arctic

13.09.2019 | Earth Sciences

Researchers produce synthetic Hall Effect to achieve one-way radio transmission

13.09.2019 | Power and Electrical Engineering

Penn engineers' new topological insulator reroutes photonic 'traffic' on the fly

13.09.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>