Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rice University seniors automate process of lengthening children’s limbs

24.04.2012
Another day, another four turns of the screw. That’s just a part of life for people, primarily children, undergoing the long and difficult process of distraction osteogenesis, a method to correct bone deformities that leave one limb shorter than the other.

A team of Rice University undergraduates has invented a device they hope will make the process safer and easier.

In collaboration with Shriners Hospital for Children in Houston, the students came up with “LinDi,” a self-adjusting, automated linear distractor. It eliminates manual manipulation of the screw with a motorized process that makes the gradual growth of new bone a more natural process. And for the first time in such a device, they have built in a force-feedback loop that protects fragile tissues and nerves from being overstressed.

To correct deformities suffered by as many as 10 million children due to trauma, infection or congenital causes, surgeons break a bone and apply a distractor that stretches the bone as it heals and gently nudges the arm or leg to a more appropriate length.

The distractor incorporates long pins sunk right into the bone on either side of the surgical break. As the bone heals, but before it sets, the patient uses an Allen wrench to give the drive screw a quarter turn four times a day and push the pins further apart a tiny bit at a time.

That’s inconvenient, even risky if a child or parent forgets to make the adjustment, said Rice mechanical engineering student Raquel Kahn. And wearing the bulky brace is no treat, either.

Team members Kahn, Alvin Chou, Mario Gonzalez, Stephanie Herkes and Elaine Wong took LinDi on as their senior design capstone project at the behest of Gloria Gogola, an orthopedic hand and upper-extremity surgeon at Shriners who specializes in pediatrics.

“The process of limb lengthening — essentially creating a localized mini-growth spurt — works well for bones, but is very hard on the soft tissues such as nerves and blood vessels,” Gogola said. “This team has done an outstanding job of designing a creative solution. Their device not only protects the soft tissues, it will ultimately speed up the entire process.”

“The problem with the current device is that there’s a lot of room for error,” Kahn said. “You can imagine that one might forget to turn it once, or turn it the wrong way, or turn it too much. And a lot of problems can arise in the soft tissue and the nerves surrounding the bone. That’s the limiting factor of this process. But LinDi implements a motor to make the distraction process nearly continuous.”

Kahn said the motorized, battery-operated LinDi adjusts the device almost 1,000 times every day, “so the process is more gradual and continuous, similar to actual bone growth.”

Working at Rice’s Oshman Engineering Design Kitchen (OEDK), the students had access to all the materials and expertise they needed to conceptualize, build and test a prototype even while completing their coursework. “We’re teaching students the importance of prototyping as early as possible,” said Marcia O’Malley, an associate professor of mechanical engineering and materials science and the team’s faculty adviser. “Even if it’s cardboard and tape, they’re able to visualize a project early in the process.

“One of the big features of this project is the force sensor,” she said. “If the loads on the tissue are too high, the device shuts the motor off.” O’Malley said early tests with strain gauges paid off in the team’s level of confidence when the time came to build a working prototype. “The great thing about the OEDK is that everything is so accessible here. I could say, ‘Well, that team over there is working with strain gauges. Go talk to them and find out how they’re doing it,” she said.

Current patients wear distractors for as long as it takes to complete the process, typically stretching a limb for two to four months, Kahn said. Then they leave the device on for six more weeks, like a cast, while the bone sets. Each of the Rice students wore a standard distractor (minus the bone-drilling part) for 24 hours to get a feel for what patients endure. “The hardest part was we kept banging into things,” Gonzalez said.

But through interviews with Gogola’s patients, they learned how tough children are. “We were really concerned, because it looks like a pretty scary, uncomfortable process,” Herkes said. “It looks like a torture device. We asked one little boy who had it on his humerus his No. 1 complaint and he said, ‘My school uniform is red, and it doesn’t match.’”

Through Shriners, the team got the opportunity to perform short-term animal testing that “helped us work out some of the kinks we weren’t aware of in the device,” Herkes said.

“We’ve gotten some nice results,” Kahn added. “Our device is doing what we want it to do.”

Though the students are about to graduate, they expect another team to continue development of the LinDi. One goal will be to make the device less bulky, and therefore curtail wear and tear on both the distractor and the patient.

David Ruth | EurekAlert!
Further information:
http://www.rice.edu
http://news.rice.edu/2012/04/20/lindi-a-stretch-for-student-engineers/

More articles from Health and Medicine:

nachricht Nitric oxide-scavenging hydrogel developed for rheumatoid arthritis treatment
06.06.2019 | Pohang University of Science & Technology (POSTECH)

nachricht Infants later diagnosed with autism follow adults’ gaze, but seldom initiate joint attention
24.05.2019 | Schwedischer Forschungsrat - The Swedish Research Council

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Novel communications architecture for future ultra-high speed wireless networks

17.06.2019 | Information Technology

Climate Change in West Africa

17.06.2019 | Earth Sciences

Robotic fish to replace animal testing

17.06.2019 | Ecology, The Environment and Conservation

VideoLinks
Science & Research
Overview of more VideoLinks >>>