Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers uncover epigenetic switches that turn stem cells into blood vessel cells

26.06.2015

Researchers at the University of Illinois at Chicago have identified a molecular mechanism that directs embryonic stem cells to mature into endothelial cells -- the specialized cells that form blood vessels. Understanding the processes initiated by this mechanism could help scientists more efficiently convert stem cells into endothelial cells for use in tissue repair, or for engineering blood vessels to bypass blockages in the heart.

The report, published online in the journal Stem Cell Reports, identifies two enzymes that alter the expression of certain genes needed for embryonic cells to differentiate and become endothelial cells.


Blood vessels in a normal zebrafish embryo (top) and zebrafish embryo where KDM4A has been depleted showing minimal blood vessel development (bottom).

Courtesy of Sergei Revskoy

The enzymes work by an "epigenetic" modification -- a chemical change to DNA, or certain proteins that interact with DNA, that changes the activity of genes without changing the DNA itself. Changes to the proteins around which DNA is wound, called histones, can up-regulate the expression of genes by exposing them to the cellular machinery that translates their DNA.

"Epigenetic modifications to histones can trigger the activation of a large number of genes simultaneously, instead of regulating one gene at a time," says Jalees Rehman, associate professor of medicine and pharmacology at UIC, and an author on the paper.

"We wanted to see if we could identify epigenetic regulators of stem cell differentiation -- a highly complex process, involving the transition of a cell that can form any type of tissue early on in development, into one that is locked in to producing only one cell type."

One of the ways histones are modified is by the addition or removal of chemical tags called methyl groups by enzymes.

The UIC research team, led by Asrar Malik, professor and head of pharmacology in the UIC College of Medicine, studied mice to look at how several of these enzymes, known as histone demethylases, alter gene expression in embryonic stem cells undergoing transformation into mature endothelial cells. They found two demethylases, KDM4A and KDM4C, were produced in abundance during the transformation.

The researchers then turned to zebra fish, depleting the enzymes in fish embryos. Without the two enzymes, the embryos were unable to form blood vessels. Depleting KDM4A alone had a greater effect than did KDM4C, suggesting that it plays an earlier role in blood vessel cell development. The genes that were regulated by the enzymes turned out to be promoters, or genes that turn on other genes, and were specific to endothelial cells.

A more complete understanding of the blood-vessel development pathway will require further investigation, Rehman said.

"We only looked at a few of the genes activated by the epigenetic switches that guide stem cells into becoming endothelial cells," he said. "Identifying additional genes activated by these switches, as well as gene pathways that are turned off during these transitions, will help shed more light on how stem cells carefully orchestrate a complex array of molecular signals which ultimately decide their fates."

###

Co-authors on the paper, all in the UIC department of pharmacology, are Dr. Liangtang Wu, Kishore Wary, Sergei Revskoy, Dr. Xiaopei Gao, Yulia Komarova and Kitman Tsang. The research was supported by National Heart, Lung and Blood Institute grants HL090152, HL118068, GM094220, HL103922 and HL079356.

Media Contact

Sharon Parmet
sparmet@uic.edu
312-413-2695

 @uicnews

http://www.uic.edu 

Sharon Parmet | EurekAlert!

More articles from Health and Medicine:

nachricht UC San Diego researchers develop sensors to detect and measure cancer's ability to spread
06.12.2018 | University of California - San Diego

nachricht New cancer immunotherapy approach turns immune cells into tiny anti-tumor drug factories
05.12.2018 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

Inaugural "Virtual World Tour" scheduled for december

28.11.2018 | Event News

 
Latest News

A new molecular player involved in T cell activation

07.12.2018 | Life Sciences

High-temperature electronics? That's hot

07.12.2018 | Materials Sciences

Supercomputers without waste heat

07.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>