Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers uncover why the body can't defend against tuberculosis

15.11.2011
The stealth art of infectious agents: Researchers uncover why the body can't defend against tuberculosis

Tuberculosis, which kills over 2 million people each year, is caused primarily by infectious bacteria known as Mycobacterium tuberculosis – or Mtb. Mtb targets human immune cells as part of its strategy to avoid detection, effectively neutralizing the body's immune response.

Up until now, scientists had a general understanding of the process, but researchers in the Immunity and Infection Research Centre at Vancouver Coastal Health Research Institute and the University of British Columbia have shown Mtb produces a specific protein that allows it to defuse and bypass the body's security system. The results are published today in The Proceedings of the National Academy of Sciences, and provide a pathway for improved treatments against this disease.

"TB has been able to completely mislead our immune systems, convincing our body it isn't there, which is why it is such an effective killer," says Dr. Yossef Av-Gay, research scientist with the Immunity and Infection Research Centre at the Vancouver Coastal Research Institute and professor in the Division of Infectious Disease at UBC Faculty of Medicine. "We discovered that the cells in charge of targeting and destroying invading bacteria are being fooled by a special protein that blocks the immune cells ability to recognize and destroy it."

Here is how it works. Macrophages are dedicated human immune cells with the role of identifying and defeating dangerous microorganisms. Normally, macrophages engulf bacteria, or other infectious agents, and contain them in an enclosed secluded environment. Then, special components of the cell (cellular organelles) move to the controlled area and release acid enzymes that dissolve the bacteria. The system works beautifully against most infectious agents. However, as Dr. Av-Gay's team found, Mtb operates in a stealth manner, turning off this immune response.

In the case of Mtb, once the bacteria become engulfed by macrophages, they secrete a protein named PtpA that disables the two separate mechanisms required for making the acidic environment that normally targets them. The end result is that Mtb lives comfortably in the immune cells, like a Trojan horse, hidden from the rest of the immune system. The bacteria then multiply inside the macrophage, and when released, they attack the body.

"We have been engaged in studying the interaction between the TB bacterium and the human macrophage over the past decade," says Dr. Av-Gay. "We are delighted with this discovery. Through learning about the tricks it uses, we now have new targets, so that we can develop better drugs against this devastating disease."

TB is the leading cause of death among infectious diseases in the world today and is responsible for one in four adult preventable deaths, according to the World Health Organization (WHO). Every 20 seconds TB kills someone, with approximately 4400 people dying every day. The WHO estimates that one-third of the world's population is infected.

Vancouver Coastal Health Research Institute is the research body of Vancouver Coastal Health Authority, which includes BC's largest academic and teaching health sciences centres: Vancouver General Hospital, UBC Hospital, and GF Strong Rehabilitation Centre. The institute is academically affiliated with UBC Faculty of Medicine, and is one of Canada's top funded research centres, with $82.4 million in research funding for 2009/2010. www.vchri.ca.

The University of British Columbia (UBC) is one of North America's largest public research and teaching institutions, and one of only two Canadian institutions consistently ranked among the world's 40 best universities. Surrounded by the beauty of the Canadian West, it is a place that inspires bold, new ways of thinking that have helped make it a national leader in areas as diverse as community service learning, sustainability and research commercialization. UBC offers more than 55,000 students a range of innovative programs and attracts $550 million per year in research funding from government, non-profit organizations and industry through 7,000 grants.

For media enquiries, please contact: Lisa Carver, Communications & Public Affairs

VCH/VCH Research Institute - 604 875-4111 x 61777 or 604 319-7533 – lisa.carver@vch.ca

Lisa Carver | EurekAlert!
Further information:
http://www.ubc.ca

More articles from Health and Medicine:

nachricht The genes are not to blame
20.07.2018 | Technische Universität München

nachricht Targeting headaches and tumors with nano-submarines
20.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>