Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers uncover why the body can't defend against tuberculosis

15.11.2011
The stealth art of infectious agents: Researchers uncover why the body can't defend against tuberculosis

Tuberculosis, which kills over 2 million people each year, is caused primarily by infectious bacteria known as Mycobacterium tuberculosis – or Mtb. Mtb targets human immune cells as part of its strategy to avoid detection, effectively neutralizing the body's immune response.

Up until now, scientists had a general understanding of the process, but researchers in the Immunity and Infection Research Centre at Vancouver Coastal Health Research Institute and the University of British Columbia have shown Mtb produces a specific protein that allows it to defuse and bypass the body's security system. The results are published today in The Proceedings of the National Academy of Sciences, and provide a pathway for improved treatments against this disease.

"TB has been able to completely mislead our immune systems, convincing our body it isn't there, which is why it is such an effective killer," says Dr. Yossef Av-Gay, research scientist with the Immunity and Infection Research Centre at the Vancouver Coastal Research Institute and professor in the Division of Infectious Disease at UBC Faculty of Medicine. "We discovered that the cells in charge of targeting and destroying invading bacteria are being fooled by a special protein that blocks the immune cells ability to recognize and destroy it."

Here is how it works. Macrophages are dedicated human immune cells with the role of identifying and defeating dangerous microorganisms. Normally, macrophages engulf bacteria, or other infectious agents, and contain them in an enclosed secluded environment. Then, special components of the cell (cellular organelles) move to the controlled area and release acid enzymes that dissolve the bacteria. The system works beautifully against most infectious agents. However, as Dr. Av-Gay's team found, Mtb operates in a stealth manner, turning off this immune response.

In the case of Mtb, once the bacteria become engulfed by macrophages, they secrete a protein named PtpA that disables the two separate mechanisms required for making the acidic environment that normally targets them. The end result is that Mtb lives comfortably in the immune cells, like a Trojan horse, hidden from the rest of the immune system. The bacteria then multiply inside the macrophage, and when released, they attack the body.

"We have been engaged in studying the interaction between the TB bacterium and the human macrophage over the past decade," says Dr. Av-Gay. "We are delighted with this discovery. Through learning about the tricks it uses, we now have new targets, so that we can develop better drugs against this devastating disease."

TB is the leading cause of death among infectious diseases in the world today and is responsible for one in four adult preventable deaths, according to the World Health Organization (WHO). Every 20 seconds TB kills someone, with approximately 4400 people dying every day. The WHO estimates that one-third of the world's population is infected.

Vancouver Coastal Health Research Institute is the research body of Vancouver Coastal Health Authority, which includes BC's largest academic and teaching health sciences centres: Vancouver General Hospital, UBC Hospital, and GF Strong Rehabilitation Centre. The institute is academically affiliated with UBC Faculty of Medicine, and is one of Canada's top funded research centres, with $82.4 million in research funding for 2009/2010. www.vchri.ca.

The University of British Columbia (UBC) is one of North America's largest public research and teaching institutions, and one of only two Canadian institutions consistently ranked among the world's 40 best universities. Surrounded by the beauty of the Canadian West, it is a place that inspires bold, new ways of thinking that have helped make it a national leader in areas as diverse as community service learning, sustainability and research commercialization. UBC offers more than 55,000 students a range of innovative programs and attracts $550 million per year in research funding from government, non-profit organizations and industry through 7,000 grants.

For media enquiries, please contact: Lisa Carver, Communications & Public Affairs

VCH/VCH Research Institute - 604 875-4111 x 61777 or 604 319-7533 – lisa.carver@vch.ca

Lisa Carver | EurekAlert!
Further information:
http://www.ubc.ca

More articles from Health and Medicine:

nachricht New flexible, transparent, wearable biopatch, improves cellular observation, drug delivery
12.11.2018 | Purdue University

nachricht Exosomes 'swarm' to protect against bacteria inhaled through the nose
12.11.2018 | Massachusetts Eye and Ear Infirmary

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

Im Focus: Nanorobots propel through the eye

Scientists developed specially coated nanometer-sized vehicles that can be actively moved through dense tissue like the vitreous of the eye. So far, the transport of nano-vehicles has only been demonstrated in model systems or biological fluids, but not in real tissue. The work was published in the journal Science Advances and constitutes one step further towards nanorobots becoming minimally-invasive tools for precisely delivering medicine to where it is needed.

Researchers of the “Micro, Nano and Molecular Systems” Lab at the Max Planck Institute for Intelligent Systems in Stuttgart, together with an international...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

In focus: Peptides, the “little brothers and sisters” of proteins

12.11.2018 | Life Sciences

Materials scientist creates fabric alternative to batteries for wearable devices

12.11.2018 | Materials Sciences

A two-atom quantum duet

12.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>