Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers track down cause of eye mobility disorder

17.04.2014

Normal development stalls in the nerves

Imagine you cannot move your eyes up, and you cannot lift your upper eyelid. You walk through life with your head tilted upward so that your eyes look straight when they are rolled down in the eye socket. Obviously, such a condition should be corrected to allow people a normal position of their head. In order to correct this condition, one would need to understand why this happens.


The image depicts mice having a normal nerve (left) as compared to an incomplete nerve, a condition resulting in permanent downward gaze in both mice and humans. Image courtesy of Jeremy Duncan.

In a paper published in the April 16 print issue of the journal Neuron, University of Iowa researchers Bernd Fritzsch and Jeremy Duncan and their colleagues at Harvard Medical School, along with investigator and corresponding author Elizabeth Engle, describe how their studies on mutated mice mimic human mutations.

It all started when Engle, a researcher at the Howard Hughes Medical Institute (HHMI), and Fritzsch, professor and departmental executive officer in the UI College of Liberal Arts and Sciences Department of Biology, began their interaction on the stimulation of eye muscles by their nerves, or “innervation,” around 20 years ago.

Approximately 10 years ago, Engle had identified the mutated genes in several patients with the eye movement disorder and subsequently developed a mouse with the same mutation she had identified in humans. However, while the effect on eye muscle innervation was comparable, there still was no clue as to why this should happen.

Fritzsch and his former biology doctoral student, Jeremy Duncan, worked with the Harvard researchers on a developmental study to find the point at which normal development of eye muscle innervations departs from the mutants. To their surprise, it happened very early in development. In fact, they found—only in mutant mice—a unique swelling in one of the nerves to the eye muscle.

More detailed analysis showed that these swellings came about because fibers extending to the eyes from the brain tried to leave the nerve as if they were already in the orbit, or eye socket. Since it happened so early, the researchers reasoned that something must be transported more effectively by this mutation to the motor neurons trying to reach the orbit and the eye muscles; something must be causing these motor neurons to assume they have already reached their target, the orbit of the eye.

To verify this enhanced function, the researchers developed another mouse that lacked the specific protein and found no defects in muscle innervation. Moreover, when they bred mice that carried malformed proteins with those that had none of these proteins, the mice developed a normal innervation.

This data provided clear evidence of what was going wrong and why, but it did not provide a clue as to the possible product that was more effectively transported in the mutant mice and, by logical extension, in humans. Further analysis revealed that breeding their mutant mice with another mutant having eye muscle innervation defects could enhance the effect of either mutation.

With this finding, they had identified the mutated protein, its enhanced function, and at least some of the likely cargo transported by this protein to allow normal innervation of eye muscles. This data provides the necessary level of understanding to design rational approaches to block the defect from developing.

Knowing what goes wrong and at what time during development can allow the problem to be corrected before it develops through proper manipulations. Engle, Fritzsch, and their collaborators currently are designing new approaches to rescue normal innervation in mice. In the future, their work may help families carrying such genetic mutations to have children with normal eye movement.

The title of the Neuron paper is “Human CFEOM1 Mutations Attenuate KIF21A Autoinhibition and Cause Oculomotor Axon Stalling.”

The research was supported by a National Institutes of Health (NIH) grant to Engle and colleague Fritzsch and HHMI funding to Engle.

Contacts

Steve Kehoe, Department of Biology, 319-335-1050

Steve Kehoe | Eurek Alert!
Further information:
http://www.uowa.edu

Further reports about: Biology Department HHMI NIH Neuron disorder eye movement eye movement disorders eyes genes movement protein proteins

More articles from Health and Medicine:

nachricht Enabling technology in cell-based therapies: Scale-up, scale-out or program in-place
23.07.2018 | SLAS (Society for Laboratory Automation and Screening)

nachricht FAU researchers identify Parkinson's disease as a possible autoimmune disease
23.07.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Detecting damage in non-magnetic steel with the help of magnetism

23.07.2018 | Materials Sciences

Researchers move closer to completely optical artificial neural network

23.07.2018 | Information Technology

Enabling technology in cell-based therapies: Scale-up, scale-out or program in-place

23.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>