Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers pinpoint sources of fibrosis-promoting cells that ravage organs

02.07.2013
4 pathways lead to creation of myofibroblasts that cause destructive runaway scarring

Scientists have tracked down and quantified the diverse origins of cells that drive fibrosis, the incurable, runaway wound-healing that scars and ultimately destroys organs such as the lungs, liver and kidneys.

Findings from research conducted at Beth Israel Deaconess Medical Center, Harvard Medical School and Massachusetts Institute of Technology in Boston and continued at The University of Texas MD Anderson Cancer Center are reported in an advance online publication at Nature Medicine on June 30.

"Answering a fundamental question about the origin of these cells by identifying four separate pathways involved in their formation allows us to look at ways to block those pathways to treat fibrosis," said senior author Raghu Kalluri, Ph.D., M.D., MD Anderson chair and professor of Cancer Biology. "It's highly unlikely that a single drug will work."

"In addition to being lethal in its own right, fibrosis is a precursor for the development of cancer and plays a role in progression, metastasis and treatment resistance," Kalluri said. "In some cancers, such as pancreatic cancer, up to 95 percent of tumors consist of fibrotic stroma."

Working in genetic mouse models of kidney fibrosis, Kalluri and colleagues identified four sources of cells called myofibroblasts, the dominant producers of collagen. Collagen normally connects damaged tissue and serves as scaffolding for wound-healing. As healing occurs, myofibroblasts and collagen usually diminish or disappear.

In fibrosis, collagen production marches on. While inflammation-inhibiting drugs can sometimes slow its progress, fibrosis now is treatable only by organ transplant.

Myofibroblasts have four types of parents

The researchers employed a fate-mapping strategy to track cells on their way to becoming myofibroblasts. In fate mapping, the promoter of a protein expresses a color inside a cell that remains with the cell no matter what happens to it until it dies, Kalluri said.

This was particularly important because two of the four sources of myofibroblasts start out as another cell type and differentiate into the collagen-producing cells.

Their experiments showed:

Half of all myofibroblasts are produced by the proliferation of pre-existing resting fibroblasts.

Another 35 percent are produced by mesenchymal stem cells that originate in the bone marrow, migrate to the "wound" site, and then differentiate into myofibroblasts.

An additional 10 percent are the products of endothelial to mesenchymal transition (EndMT), in which blood vessel cells change into mesenchymal cells, then become myofibroblasts.

The final 5 percent come from epithelial to mesenchymal transition (EMT), in which functional cells of an organ sometimes behave like mesenchymal cells and myofibroblasts.

"These differentiation pathways provide leads for drug targets," Kalluri said.
"Combining an antiproliferation drug with therapies that block one or more differentiation pathways could provide a double hit to control fibrosis. We hope to synergize these pathways for the most effective therapeutic response."

Recruitment from the bone marrow, EMT and EndMT appear to rely on transforming growth factor beta 1 (TGF-B1) to differentiate into myofibroblasts.

Pericytes are not involved

Some earlier descriptive studies implicated pericytes – connective, contractile cells that surround blood vessels – in the creation of myofibroblasts. The researchers tested pericytes via fate-mapping and found that they're not involved in myofibroblast generation.

Deleting pericytes did not improve kidney fibrosis or change the recruitment of myofibroblasts.

While their research focused on kidney fibrosis, the scientists believe their findings will be applicable to other types of fibrosis.

"Recruitment of fibroblasts is heterogonous. The sources are likely to be the same for lung or liver fibrosis, but the ratios may be different," Kalluri said. "Now we need to go into those other organs and establish a baseline of what we're facing like we did in kidney fibrosis."

Kalluri holds the Rebecca Meyer Brown and Joseph Mellinger Brown Chair in Basic Science Research and also and directs MD Anderson's Metastasis Research Center.

Co-authors with Kalluri are lead author Valeria LeBleu, Ph.D., and Hikaru Sugimoto, Ph.D., of MD Anderson's Department of Cancer Biology and Metastasis Research Center and formerly of the Department of Matrix Biology at Beth Israel Deaconess Medical Center, the home of co-authors Gangadhar Taduri, M.D., Joyce O'Connell, Ph.D.,Vesselina Cooke, Ph.D., and Craig Woda, M.D.

This research was funded by grants from the National Institutes of Health (DK55001, DK81976, CA125550, CA155370 and CA151925, 2T32DK007760-11, (5T32HL007374-30), the U.S. National Research Service Award F32 Ruth Kirschstein Postdoctoral Fellowship ((5F32DK082119-02) and the U.S. Department of Defense Breast Cancer Predoctoral Traineeship Award.

Scott Merville | EurekAlert!
Further information:
http://www.mdanderson.org

More articles from Health and Medicine:

nachricht The genes are not to blame
20.07.2018 | Technische Universität München

nachricht Targeting headaches and tumors with nano-submarines
20.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>