Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify cause of hereditary skeletal muscle disorder

22.02.2017

An international research team from the University Hospital of Munich (LMU), Newcastle University and the University of Liverpool has identified a gene mutation that causes a hereditary skeletal muscle disorder. The study is published in the "American Journal of Human Genetics".

The starting point for this discovery was a family in which two of six children dad been living with delayed motor development and muscle weakness since birth. In addition to skeletal muscles, eyes and brain seemed to be affected as well: Both patients developed early-onset cataracts and had mild mental retardation.


Muscle biopsy of a patient: lost muscle tissue (red) has been replaced by connective tissue (pink) and adipose tissue (white)

The scientists analysed the whole exome of the patients, that is to say all regions of the DNA that encode proteins. This analysis resulted in a suspicious variant in the gene INPP5K, which appeared to be related to the manifestation of the disease. Definite proof came from genetic studies involving further unrelated patients with the same disorder: Together with colleagues at home and abroad, the research team came across INPP5K mutations in seven additional families.

In order to understand the mechanism of the disorder, the researchers investigated the function of INPP5K in zebrafish larvae. The loss of INPP5K caused defective development of skeletal muscles and eyes, replicating essential features of the human disease.

The INPP5K gene provides the blueprint for making an enzyme that controls the turnover of phosphoinositides, small lipids that are involved in the regulation of a variety of cell and organ functions. Further experiments indeed showed that most disease-related INPP5K mutations resulted in strongly impaired enzyme function.

The association between abnormal phosphoinositide metabolism and hereditary human diseases had already been demonstrated in earlier studies. However, mutations did not affect the INPP5K gene but were found in genes for other phosphoinositide-metabolizing enzymes.

The condition caused by INPP5K mutations is one of the rare diseases. "It was only thanks to a worldwide cooperation with doctors and geneticists, that we were able to identify several affected families and confirm our initial suspicion," says Professor Jan Senderek from the Friedrich Baur Institute of the University Hospital of Munich (LMU) and last author of the publication.

Although the results of the study do not yet establish a causative therapy, the identification of the gene defect is expected to pave the way for the search for new treatment options. And already now, the results are of practical importance, as Professor Senderek notes: "The discovery of the cause of the disease enables targeted genetic diagnostics and counselling of affected families and thus contributes to improved care of patients with this rare disease."

Journal reference:

Wiessner et al.: Mutations in INPP5K, Encoding a Phosphoinositide 5-Phosphatase, Cause Congenital Muscular Dystrophy with Cataracts and Mild Cognitive Impairment. American Journal of Human Genetics, 2017,
DOI: http://dx.doi.org/10.1016/j.ajhg.2017.01.024

Contact:

Prof. Dr. Jan Senderek
Friedrich-Baur-Institut an der Neurologischen Klinik und Poliklinik
Klinikum der Universität München (LMU)
Campus Innenstadt
Tel.: +49 89/4400-57415
e-mail: jan.senderek@med.uni-muenchen.de

Philipp Kressirer | idw - Informationsdienst Wissenschaft

More articles from Health and Medicine:

nachricht Why might reading make myopic?
18.07.2018 | Universitätsklinikum Tübingen

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>