Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers gain better understanding of mechanism behind tau spreading in the brain

02.05.2012
And the progression of Alzheimer's disease

Researchers at Mount Sinai School of Medicine have gained insight into the mechanism by which a pathological brain protein called tau contributes to the progression of Alzheimer's disease (AD) and other neurodegenerative disorders. This finding, published in the most recent issue of the Journal of Biological Chemistry, may provide the basis for future investigations on how to prevent tau from damaging brain circuits involved in cognitive function.

Previous studies have shown that the abnormal folding, or misfolding, and buildup of tau are key neuropathological features of many neurodegenerative disorders, including AD. Some research has demonstrated that AD-type tau neuropathology spreads in the brain, seemingly moving from one brain cell to another.

A research group led by Giulio Maria Pasinetti, MD, PhD, Saunders Family Chair in Neurology at Mount Sinai School of Medicine, explored whether misfolded tau released by neurons from the human brain – also known as paired helical filaments (PHFs) – could actually be taken up by surrounding cells and promote the spread of tau neuropathology. The evidence was gathered by treating human neuronal cell lines with human Alzheimer's disease-derived PHFs. The researchers found that not only did the cells in fact internalize the human PHFs, the abnormal tau then propagated its abnormal state to the native, normal tau protein in the cells.

"While these findings are potentially important for possibly opening new therapeutic avenues in Alzheimer's disease, they also shed light on a new therapeutic target for a wide variety of disorders sharing pathological features with Alzheimer's disease, for which there are currently no cures," said Dr. Pasinetti. "Such diseases include Progressive Supranuclear Palsy, frontotemporal dementia, and other devastating neurodegenerative disorders in which misfolded tau forms aggregates in the brain."

Next the researchers treated the same cell lines with a grape-seed extract enriched in polyphenols, which are natural compounds found in grapes, fruits, and vegetables, based on 2011 research showing the efficacy of this extract in preventing the progression of AD in mice. Dr. Pasinetti's group found that a subfraction of this natural grape-seed extract enriched in polyphenols was able to prevent the cell-to-cell spread of tau pathology in the same human neuronal cell lines.

"Pathology in neurodegenerative disorders is thought to be initiated decades before disease onset," said Dr. Pasinetti. "While further research is needed in humans, we hypothesize that this grape-derived compound may be a promising therapy for not only treating but preventing neurodegenerative disorders involving tau neuropathology."

Dr. Pasinetti and Jun Wang, PhD, Assistant Professor of Neurology at Mount Sinai, are named inventors of a pending application filed by Mount Sinai School of Medicine titled "Methods Preventing Neurodegenerative Disease" related to the use of grape-seed extracts for the treatment of neurodegenerative diseases and may benefit financially from this patent.

About The Mount Sinai Medical Center

The Mount Sinai Medical Center encompasses both The Mount Sinai Hospital and Mount Sinai School of Medicine. Established in 1968, Mount Sinai School of Medicine is one of the leading medical schools in the United States. The Medical School is noted for innovation in education, biomedical research, clinical care delivery, and local and global community service. It has more than 3,400 faculty in 32 departments and 14 research institutes, and ranks among the top 20 medical schools both in National Institutes of Health (NIH) funding and by US News and World Report.

The Mount Sinai Hospital, founded in 1852, is a 1,171-bed tertiary- and quaternary-care teaching facility and one of the nation's oldest, largest and most-respected voluntary hospitals. In 2011, US News and World Report ranked The Mount Sinai Hospital 16th on its elite Honor Roll of the nation's top hospitals based on reputation, safety, and other patient-care factors. Of the top 20 hospitals in the United States, Mount Sinai is one of 12 integrated academic medical centers whose medical school ranks among the top 20 in NIH funding and US News and World Report and whose hospital is on the US News and World Report Honor Roll. Nearly 60,000 people were treated at Mount Sinai as inpatients last year, and approximately 560,000 outpatient visits took place.

Mount Sinai Press Office | EurekAlert!
Further information:
http://www.mssm.edu

More articles from Health and Medicine:

nachricht Underwater Snail-o-Bot gets kick from light
27.02.2020 | Max-Planck-Institut für Intelligente Systeme

nachricht Existing drugs may offer a first-line treatment for coronavirus outbreak
27.02.2020 | Norwegian University of Science and Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: High-pressure scientists in Bayreuth discover promising material for information technology

Researchers at the University of Bayreuth have discovered an unusual material: When cooled down to two degrees Celsius, its crystal structure and electronic properties change abruptly and significantly. In this new state, the distances between iron atoms can be tailored with the help of light beams. This opens up intriguing possibilities for application in the field of information technology. The scientists have presented their discovery in the journal "Angewandte Chemie - International Edition". The new findings are the result of close cooperation with partnering facilities in Augsburg, Dresden, Hamburg, and Moscow.

The material is an unusual form of iron oxide with the formula Fe₅O₆. The researchers produced it at a pressure of 15 gigapascals in a high-pressure laboratory...

Im Focus: From China to the South Pole: Joining forces to solve the neutrino mass puzzle

Study by Mainz physicists indicates that the next generation of neutrino experiments may well find the answer to one of the most pressing issues in neutrino physics

Among the most exciting challenges in modern physics is the identification of the neutrino mass ordering. Physicists from the Cluster of Excellence PRISMA+ at...

Im Focus: Therapies without drugs

Fraunhofer researchers are investigating the potential of microimplants to stimulate nerve cells and treat chronic conditions like asthma, diabetes, or Parkinson’s disease. Find out what makes this form of treatment so appealing and which challenges the researchers still have to master.

A study by the Robert Koch Institute has found that one in four women will suffer from weak bladders at some point in their lives. Treatments of this condition...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Preserved and fresh – Neutrons show details of the freeze drying process

27.02.2020 | Life Sciences

Underwater Snail-o-Bot gets kick from light

27.02.2020 | Health and Medicine

Explained: Why water droplets 'bounce off the walls'

27.02.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>