Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find promise in new treatments for GBM

02.10.2014

Glioblastma multiforme (GBM) is one of the most lethal primary brain tumors, with median survival for these patients only slightly over one year.

Researchers at Boston University School of Medicine (BUSM), in collaboration with researchers from the City of Hope, are looking toward novel therapeutic strategies for the treatment of GBM in the form of targeted therapies against a unique receptor, the interleukin-13 receptor α chain variant 2 (IL13Rα2).

In a review paper published in the October issue of Neuro-Oncology, the researchers discuss various targeted therapies against IL13Rα2 and early successes of clinical trials with these therapies in the treatment of GBM. The paper also highlights the need for future trials to improve efficacy and toxicity profiles of targeted therapies in this field.

Targeted therapies, which are drugs that interfere with specific molecules involved in cancer growth, have been successfully used in the treatment of many cancers, including breast and blood cancers. Successful targets for therapies are specific to tumor cells and not found on normal cells.

Selectively expressed on GBM and absent on surrounding brain tissue, the interleukin-13 receptor α chain variant 2 (IL13Rα2) was identified as a potential target for therapy for GBM two decades ago. IL13Rα2 also plays an important role in the growth of tumors.

In normal physiologic conditions, IL-13 binds to the receptor IL13Rα1 and helps regulate immune responses. In cancer cells, IL-13 binds to the receptor IL13Rα2 and, through a series of steps, prevents cancer cells from undergoing normal cell death. Increased expression of IL13Rα2 promotes the progression of GBM.

Since its discovery, IL13Rα2 has provided a target for therapies in GBM. These therapies have ranged from fusion proteins of IL-13 and bacterial toxins, oncolytic viruses, and immunotherapies. A phase I clinical trial and a phase III clinical trial have been completed for a T-cell based immunotherapy and IL-13 bacterial toxin fusion protein respectively, both with promising outcomes.

"The field of targeted therapies in gliomas holds a lot of promise, and IL13Rα2 is in an optimal position to materialize these promises," explained corresponding author Sadhak Sengupta, PhD, assistant professor of neurosurgery at BUSM and principal investigator of the Brain Tumor Lab at Roger Williams. "While early trials are encouraging, we need further research to achieve better targeting of the receptor and improved safety profiles of the treatments."

###

Funding for this research was provided by the Roger Williams Medical Center Brain Tumor Research Fund.

Gina DiGravio | Eurek Alert!
Further information:
http://www.bu.edu

Further reports about: BRAIN BUSM Boston GBM IL-13 Medical Williams bacterial cancer cells new treatments receptor treatments

More articles from Health and Medicine:

nachricht Collagen nanofibrils in mammalian tissues get stronger with exercise
14.12.2018 | University of Illinois College of Engineering

nachricht New discoveries predict ability to forecast dementia from single molecule
12.12.2018 | UT Southwestern Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>