Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover new treatment to cure the MRSA ‘superbug’

14.11.2013
Recent work from Uni­ver­sity Dis­tin­guished Pro­fessor of Biology Kim Lewis promises to over­come one of the leading public health threats of our time.

In a ground­breaking study pub­lished Wednesday in the journal Nature, Lewis’ team presents a novel approach to treat and elim­i­nate methi­cillin resis­tant staphy­lo­coccus aureus, or MRSA, a potent bac­terium whose resis­tance to antibi­otics has kept it one step ahead of researchers. That is, until now.

The so-​​called “superbug” infects 1 mil­lion Amer­i­cans each year. A major problem with MRSA is the devel­op­ment of deep-​​seated chronic infec­tions such as osteomyelitis (bone infec­tion), endo­carditis (heart infec­tion), or infec­tions of implanted med­ical devices. Once estab­lished, these infec­tions are often incur­able, even when appro­priate antibi­otics are used.

Bac­teria such as MRSA have evolved to actively resist cer­tain antibi­otics, a fact that has gen­er­ated sig­nif­i­cant interest among the sci­en­tific and med­ical com­mu­ni­ties. But Lewis, Director of Northeastern’s Antimi­cro­bial Dis­covery Center, sus­pected that a dif­ferent adap­tive func­tion of bac­teria might be the true cul­prit in making these infec­tions so devastating.

The new work rep­re­sents the cul­mi­na­tion of more than a decade of research on a spe­cial­ized class of cells pro­duced by all pathogens called per­sis­ters. According to Lewis, these cells evolved to sur­vive. “Sur­vival is their only func­tion,” he said. “They don’t do any­thing else.”

Lewis and his research team posited that if they could kill these expert sur­vivors, per­haps they could cure chronic infections—even those resis­tant to mul­tiple antibi­otics such as MRSA. Fur­ther­more, said Brian Conlon, a post­doc­toral researcher in Lewis’ lab and first author on the paper, “if you can erad­i­cate the per­sis­ters, there’s less of a chance that resis­tance will develop at all.”

Lewis, who was elected to the Amer­ican Academy of Micro­bi­ology in 2011 for his schol­ar­ship in the field, has found that per­sis­ters achieve their sin­gular goal by entering a dor­mant state that makes them imper­vious to tra­di­tional antibi­otics. Since these drugs work by tar­geting active cel­lular func­tions, they are use­less against dor­mant per­sis­ters, which aren’t active at all. For this reason, per­sis­ters are crit­ical to the suc­cess of chronic infec­tions and biofilms, because as soon as a treat­ment runs its course, their reawak­ening allows for the infec­tion to estab­lish itself anew.

In the recent study, which also includes con­tri­bu­tions from assis­tant pro­fessor Steve Leonard of the Depart­ment of Phar­macy Prac­tice, Lewis’ team found that a drug called ADEP effec­tively wakes up the dor­mant cells and then ini­ti­ates a self-​​destruct mech­a­nism. The approach com­pletely erad­i­cated MRSA cells in a variety of lab­o­ra­tory exper­i­ments and, impor­tantly, in a mouse model of chronic MRSA infection.

Cou­pling ADEP with a tra­di­tional antibi­otic, Conlon noted, allowed the team to com­pletely destroy the bac­te­rial pop­u­la­tion without leaving any survivors.

As with all other antibi­otics, actively growing bac­te­rial cells will likely develop resis­tance to ADEP. How­ever, Lewis said, “cells that develop ADEP resis­tance become rather wimpy.” That is, other tra­di­tional drugs such as rifampicin or line­zolid work well against ADEP-​​resistant cells, pro­viding a unique cock­tail that not only kills per­sis­ters but also elim­i­nates ADEP-​​resistant mutant bacteria.

Dr. Richard Novick of New York University’s Lan­gone Med­ical Center and a leader in the field said the research is a “bril­liant out­growth of Kim Lewis’ pio­neering work on bac­te­rial per­sis­ters and rep­re­sents a highly cre­ative ini­tia­tive in this era of dimin­ishing antibi­otic utility.”

While ADEP tar­gets MRSA, Lewis’ team believes sim­ilar com­pounds will be useful for treating other infec­tions as well as any other dis­ease model that can only be over­come by elim­i­nating a pop­u­la­tion of rogue cells, including can­cerous tumors. They are pur­suing sev­eral already.

This entry was posted in Science & Technology and tagged antibiotic-resistance, biology, chronic infection, College of Science, microbiology, MRSA, persister cells, research.

Kara Shemin | EurekAlert!
Further information:
http://www.neu.edu

More articles from Health and Medicine:

nachricht Spread of deadly eye cancer halted in cells and animals
13.11.2018 | Johns Hopkins Medicine

nachricht Breakthrough in understanding how deadly pneumococcus avoids immune defenses
13.11.2018 | University of Liverpool

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

The dawn of a new era for genebanks - molecular characterisation of an entire genebank collection

13.11.2018 | Life Sciences

Fish recognize their prey by electric colors

13.11.2018 | Life Sciences

Ultrasound Connects

13.11.2018 | Awards Funding

VideoLinks
Science & Research
Overview of more VideoLinks >>>