Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers determine why tendons break down with age

05.08.2014

Scientists at Queen Mary University of London (QMUL) have identified differences in the proteins present in young and old tendons, in new research that could guide the development of treatments to stop tissue breakdown from occurring.

Tendon structure in horses is similar to humans, and both face common injuries. The researchers used a horse model to undertake a thorough analysis of all the proteins and protein fragments present in healthy and injured tendons. 

Working with scientists at the University of Liverpool, the team collected data, which shows that healthy, older tendons have a greater amount of fragmented material within them, suggesting accumulated damage over time that has not been fully repaired. 

When examining injured tendons, the team found even more evidence of protein breakdown. However, whilst in younger tendons, the cells were active and trying to repair the damage, there was an accumulation of different protein fragments in older tendons. This suggests the cells somehow lose the ability to repair damage during the ageing process. 

... more about:
»ability »ageing »damage »fragments »healthy »injury »proteins »repair »tendon

“Normal function of tendons, such as the Achilles, is important not just for Commonwealth athletes but for everyday activities for ordinary people,” said co-author Dr Hazel Screen, a Reader in biomedical engineering at QMUL’s  School of Engineering and Materials Science and Institute of Bioengineering

She added: “This is the first study of its kind, and provides evidence that the increased risk of tendon injury with ageing might be due to a reduced ability of tendon cells to repair damage effectively.”   

This novel information is an important first step towards understanding how our tissues break down as we age and could help us find ways to prevent it occurring in the future. 

Proteomic analysis reveals age-related changes in tendon matrix composition, with age-and injury-specific matrix fragmentation’ is published in the Journal of Biological Chemistry.

 

For more information or to arrange interviews with the author, please contact:

Neha Okhandiar

Public Relations Manager - Science and Engineering

T: +44 (0)207 882 7927

E: n.okhandiar@qmul.ac.uk

Queen Mary University of London                         

Queen Mary University of London is the “biggest star” (Times Higher Education) among the UK's leading research-intensive higher education institutions, with five campuses in the capital: Mile End, Whitechapel, Charterhouse Square, West Smithfield and Lincoln’s Inn Fields. 

A member of the Russell Group, QMUL is also one of the largest of the colleges of the University of London, with 17,800 students - 20 per cent of whom are from more than 150 countries. 

Some 4,000 staff deliver world-class degrees and research across 21 departments, within three Faculties: Science and Engineering; Humanities and Social Sciences; and the School of Medicine and Dentistry.

Neha Okhandiar | Queen Mary University of London (QMUL)
Further information:
http://www.qmul.ac.uk

Further reports about: ability ageing damage fragments healthy injury proteins repair tendon

More articles from Health and Medicine:

nachricht Why might reading make myopic?
18.07.2018 | Universitätsklinikum Tübingen

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>