Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers create better methods to detect E. coli

17.06.2014

Kansas State University diagnosticians are helping the cattle industry save millions of dollars each year by developing earlier and accurate detection of E. coli.

Lance Noll, master's student in veterinary biomedical science, Greensburg; T.G. Nagaraja, university distinguished professor of diagnostic medicine and pathobiology; and Jianfa Bai, assistant professor in the Kansas State Veterinary Diagnostic Laboratory, are leading a project to improve techniques for detecting pathogenic Shiga toxin-producing E. coli O157:H7. A U.S. Department of Agriculture Coordinated Agriculture Project grant is funding the work.

The researchers are part of a College of Veterinary Medicine team studying preharvest food safety in beef cattle. Noll has developed and validated a molecular assay that can detect and quantify major genes specific for E. coli O157.

"Developing a method to detect E. coli before it can potentially contaminate the food supply benefits the beef industry by preventing costly recalls but also benefits the consumer by ensuring the safety of the beef supply," Noll said.

The newly developed test is a molecular assay, or polymerase chain reaction, that detects bacteria based on genetic sequences, which are the bacteria's "fingerprints," Nagaraja said. The test is rapid and less labor-intensive than existing detection methods. The method can be automated and test many samples in a short period of time.

The test can be used in a diagnostic or research laboratory to accurately detect E. coli and can help with quality control in cattle facilities.

"The novelty of this test is that it targets four genes," Nagaraja said. "We are constantly working on finding better and more sensitive ways to detect these pathogens of E. coli in cattle feces."

To develop the diagnostic test, Noll and Nagaraja worked with two Kansas State University molecular biologists: Xiaorong Shi, research assistant of diagnostic medicine and pathobiology, and Bai.

"Beef cattle production is a major industry in Kansas and Kansas State University has a rich tradition in the research of beef cattle production and beef safety," Noll said. "As a graduate student in veterinary biomedical sciences, I am proud to be a member of a multidisciplinary team in the College of Veterinary Medicine that aims to make beef a safe product for the consumers."

Noll was named a winner at the 11th annual Capitol Graduate Research Summit this spring for his research project and poster, "A four-plex real-time PCR assay for the detection and quantification of Escherichia coli O157 in cattle feces."

T.G. Nagaraja | Eurek Alert!
Further information:
http://www.k-state.edu

More articles from Health and Medicine:

nachricht Potential seen for tailoring treatment for acute myeloid leukemia
10.12.2018 | University of Washington Health Sciences/UW Medicine

nachricht UC San Diego researchers develop sensors to detect and measure cancer's ability to spread
06.12.2018 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Small but ver­sat­ile; key play­ers in the mar­ine ni­tro­gen cycle can util­ize cy­anate and urea

10.12.2018 | Life Sciences

New method gives microscope a boost in resolution

10.12.2018 | Physics and Astronomy

Carnegie Mellon researchers probe hydrogen bonds using new technique

10.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>