Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researcher finds revolutionary way to treat eye cancer

30.08.2010
Treatment may prevent blindness

Rare but devastating, eye cancer can strike anyone at any time and treating it often requires radiation that leaves half of all patients partially blind.

But a new technique developed by Scott Oliver, MD, assistant professor at the University of Colorado School of Medicine, may change all that.

Oliver has discovered that silicone oil applied inside the eye can block up to 55 percent of harmful radiation, enough to prevent blindness in most patients.

His findings, published in the July issue of the Archives of Ophthalmology, may revolutionize the way eye cancer is treated.

"If you get diagnosed with eye cancer you want to know, `Is this going to kill me? Is this going to make me go blind?''' said Oliver, director of the Ophthalmic Oncology Center at the Rocky Mountain Lions Eye Institute on the University of Colorado's Anschutz Medical Campus. "I believe this treatment will allow you to keep your eye and keep your vision."

Oliver focused on choroidal melanoma of the eye or uveal cancer, the most common and dangerous form of a disease that strikes over 2,000 people each year. It can spread quickly to the liver and lungs which is often fatal. The cancer can occur in people of any age - fair skin and sun exposure are thought to be a leading cause.

Physicians often treat it with a technique called plaque brachytherapy. Surgeons attach a gold cap containing radioactive seeds to the white part of the eye. For one week the radiation slowly incinerates the tumor but it also causes long-term damage.

"Radiation injures blood vessels and nerves in the back of the eye," Oliver said. "Half of all patients are legally blind in three years in the treated eye."

In his quest to save their eyesight, Oliver experimented with a series of substances that would block radiation from striking critical structures while allowing it to hit the tumor. He discovered that silicone oil, already used to treat retinal detachment, could screen out a majority of harmful radiation.

"You don't have to block out all the radiation to protect the eye because the vital structures in the eye can tolerate low doses of radiation," he said.

Oliver experimented on cadaver eyes and tested the oil on animals in the laboratory and found no harmful side-effects.

"We are now at the point where we can embark on a clinical trial," he said. "This is a significant development in the way we treat this disease. In the past, we could save the eye with radiation but we saved vision only half the time. With this treatment, I believe we will do much better in the future."

Faculty at the University of Colorado Denver's School of Medicine work to advance science and improve care. These faculty members include physicians, educators and scientists at University of Colorado Hospital, The Children's Hospital, Denver Health, National Jewish Health, and the Denver Veterans Affairs Medical Center. Degrees offered by the UC Denver School of Medicine include doctor of medicine, doctor of physical therapy, and masters of physician assistant studies. The School is located on the University of Colorado's Anschutz Medical Campus, one of four campuses in the University of Colorado system. For additional news and information, please visit the UC Denver newsroom online.

David Kelly | EurekAlert!
Further information:
http://www.ucdenver.edu

More articles from Health and Medicine:

nachricht New antibody analysis accelerates rational vaccine design
09.08.2018 | Scripps Research Institute

nachricht Distrust of power influences choice of medical procedures
01.08.2018 | Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>