Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research suggests promise of cell therapy for bowel disease

20.09.2012
New research shows that a special population of stem cells found in cord blood has the innate ability to migrate to the intestine and contribute to the cell population there, suggesting the cells' potential to treat inflammatory bowel disease (IBD).

"These cells are involved in the formation of blood vessels and may prove to be a tool for improving the vessel abnormalities found in IBD," said lead author Graca Almeida-Porada, M.D., Ph.D., a professor at Wake Forest Baptist Medical Center's Institute for Regenerative Medicine. The research is published in the current print issue of the journal Hepatology.

Up to 1 million Americans have IBD, which is characterized by frequent diarrhea and abdominal pain. IBD actually refers to two conditions – ulcerative colitis and Crohn's disease – in which the intestines become red and swollen and develop ulcers. With IBD, blood vessels in the intestine leak and contribute to inflammation.

While there is currently no cure for IBD, there are drug therapies aimed at reducing inflammation and preventing the immune response. However, these therapies aren't always effective. The long-term aim of the research is to develop an injectable cell therapy to induce tissue recovery.

The work, performed while Almeida-Porada was at the University of Nevada, also involved colleagues from Indiana University School of Medicine. The researchers studied a special population of cells, known as endothelial colony-forming cells, found in cord blood, bone marrow and circulating blood. The finding in 1997 that the cells can contribute to blood vessel formation in adults, not just embryos, initiated the notion of using them for therapy. Studies in humans have validated the ability of these cells to improve reduced blood flow to the limbs and to treat heart diseases.

However, there have been few studies to explore the inherent biologic ability of these cells to home to different organs and contribute to tissue-specific cell populations. Evaluating their potential to migrate to the intestine was an obvious choice, said Almeida-Porada, because dysfunctional blood vessels are a hallmark of IBD. Not only are circulating levels of vessel-forming cells reduced in patients with IBD, but a key factor in IBD progression is the development of abnormal or immature blood vessels, which leads to chronic inflammation.

The cells were injected into fetal sheep at 59 to 65 days gestation. About 11 weeks later, intestinal tissue was analyzed to detect the presence of the human cells. The researchers found that the human cells had migrated to the intestine and contributed significantly to the cell population there.

"This study shows that the cells can migrate to and survive in a healthy intestine and have the potential to support vascular health," said Almeida-Porada. "Our next step will be to determine whether the cells can survive in the 'war' environment of an inflamed intestine."

The researchers also evaluated the ability of the cells to home to the liver. Smaller numbers of cells reached the liver than the intestine, suggesting that new strategies would be needed to enhance the therapeutic potential for this organ.

The research was supported by the National Heart, Lung, and Blood Institute grants HL097623 and HL073737.

Co-authors were Christopher D. Porada, Wake Forest Baptist; Joshua A. Wood, Evan Colletti, Esmail D. Zanjani, University of Nevada, Reno; and Laura E. Mead, David Engram, and Mervin C. Yoder, Indiana University School of Medicine.

Media Contacts: Karen Richardson, krchrdsn@wakehealth.edu, 336-716-4453 or Main Number 336-716-4587.

Karen Richardson | EurekAlert!
Further information:
http://www.wakehealth.edu

More articles from Health and Medicine:

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

nachricht Direct conversion of non-neuronal cells into nerve cells
03.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>