Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research Shows Nerve Stimulation Can Help Reorganize Brain

20.07.2012
UT Dallas researchers recently demonstrated how nerve stimulation paired with specific experiences, such as movements or sounds, can reorganize the brain. This technology could lead to new treatments for stroke, tinnitus, autism and other disorders.

In a related paper, UT Dallas neuroscientists showed that they could alter the speed at which the brain works in laboratory animals by pairing stimulation of the vagus nerve with fast or slow sounds.

A team led by Dr. Robert Rennaker and Dr. Michael Kilgard looked at whether repeatedly pairing vagus nerve stimulation with a specific movement would change neural activity within the laboratory rats’ primary motor cortex. To test the hypothesis, they paired the vagus nerve stimulation with movements of the forelimb in two groups of rats. The results were published in a recent issue of Cerebral Cortex.

After five days of stimulation and movement pairing, the researchers examined the brain activity in response to the stimulation. The rats who received the training along with the stimulation displayed large changes in the organization of the brain’s movement control system. The animals receiving identical motor training without stimulation pairing did not exhibit any brain changes, or plasticity.

People who suffer strokes or brain trauma often undergo rehabilitation that includes repeated movement of the affected limb in an effort to regain motor skills. It is believed that repeated use of the affected limb causes reorganization of the brain essential to recovery. The recent study suggests that pairing vagus nerve stimulation with standard therapy may result in more rapid and extensive reorganization of the brain, offering the potential for speeding and improving recovery following stroke, said Rennaker, associate professor in The University of Texas at Dallas’ School of Behavioral and Brain Sciences

“Our goal is to use the brain’s natural neuromodulatory systems to enhance the effectiveness of standard therapies,” Rennaker said. “Our studies in sensory and motor cortex suggest that the technique has the potential to enhance treatments for neurological conditions ranging from chronic pain to motor disorders. Future studies will investigate its effectiveness in treating cognitive impairments.”

Since vagus nerve stimulation has an excellent safety record in human patients with epilepsy, the technique provides a new method to treat brain conditions in which the timing of brain responses is abnormal, including dyslexia and schizophrenia.

In another paper in the journal Experimental Neurology, Kilgard led a team that paired vagus nerve stimulation with audio tones of varying speeds to alter the rate of activity within the rats’ brains. The team reported that this technique induced neural plasticity within the auditory cortex, which controls hearing.

“Our goal is to use the brain’s natural neuromodulatory systems to enhance the effectiveness of standard therapies,” Dr. Rennaker said.

The UT Dallas researchers are working with a device developed by MicroTransponder, a biotechnology firm affiliated with the University. MicroTransponder currently is testing a vagus nerve stimulation therapy on human patients in Europe in hopes of reducing or eliminating the symptoms of tinnitus, the debilitating disorder often described as “ringing in the ears.”

“Understanding how brain networks self-organize themselves is vitally important to developing new ways to rehabilitate patients diagnosed with autism, dyslexia, stroke, schizophrenia and Alzheimer’s disease,” said Kilgard, a professor of neuroscience.

Treatment of neurological disease is currently limited to pharmacological, surgical or behavioral interventions. But this recent research indicates it may be possible to effectively manipulate the plasticity of the human brain for a variety of purposes. Patients then could benefit from brain activity intentionally directed toward rebuilding lost skills.

If subsequent studies confirm the UT Dallas findings, human patients may have access to more efficient therapies that are minimally invasive and avoid long-term use of drugs.

Media Contact: Emily Martinez, UT Dallas, (214) 905-3049, emily.martinez@utdallas.edu

or the Office of Media Relations, UT Dallas, (972) 883-2155, newscenter@utdallas.edu

Emily Martinez | EurekAlert!
Further information:
http://www.utdallas.edu
http://www.utdallas.edu/news/2012/7/19-18871_Research-Shows-Nerve-Stimulation-Can-Help-Reorgani_article-wide.html?WT.mc_id=NewsHomePage

More articles from Health and Medicine:

nachricht UC San Diego cancer scientists identify new drug target for multiple tumor types
12.07.2019 | University of California - San Diego

nachricht Bacteria engineered as Trojan horse for cancer immunotherapy
04.07.2019 | Columbia University School of Engineering and Applied Science

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

Im Focus: Modelling leads to the optimum size for platinum fuel cell catalysts: Activity of fuel cell catalysts doubled

An interdisciplinary research team at the Technical University of Munich (TUM) has built platinum nanoparticles for catalysis in fuel cells: The new size-optimized catalysts are twice as good as the best process commercially available today.

Fuel cells may well replace batteries as the power source for electric cars. They consume hydrogen, a gas which could be produced for example using surplus...

Im Focus: The secret of mushroom colors

Mushrooms: Darker fruiting bodies in cold climates

The fly agaric with its red hat is perhaps the most evocative of the diverse and variously colored mushroom species. Hitherto, the purpose of these colors was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Neutrino-Observatorium IceCube am Südpol wird ausgebaut

17.07.2019 | Physics and Astronomy

Atacama Desert: Some lichens can meet their need for water from air humidity

17.07.2019 | Life Sciences

New DFG Research Group "Metrology for THz Communications"

17.07.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>