Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research represents major breakthrough in macular degeneration

27.04.2012
University of Kentucky researchers, led by Dr. Jayakrishna Ambati, have made a major breakthrough in the "dry" form of age-related macular degeneration known as geographic atrophy (GA).

GA is an untreatable condition that causes blindness in millions of individuals due to death of retinal pigmented epithelial cells. The paper, "DICER1 loss and Alu RNA Induce Age-Related Macular Degeneration via the NLRP3 Inflammasome and MyD88," was published in the April 26 online edition of the premier journal Cell.

Ambati, professor of physiology, and professor and vice chair of ophthalmology and visual sciences at UK, is a leader in the field of macular degeneration research. Previous research from the Ambati laboratory published in the journal Nature showed that in human eyes with geographic atrophy there is a deficiency of the enzyme DICER1, leading to accumulation of toxic Alu RNA molecules in the retinal pigmented epithelium. The Cell paper shows that when these RNAs build up in the eye they trigger activation of an immune complex known as the NLRP3 inflammasome. In turn, this leads to the production of a molecule known as IL-18, which causes death of retinal pigmented epithelial cells and vision loss by activating a critical protein known as MyD88.

Importantly, Ambati and colleagues found evidence that activity of the inflammasome, IL-18, and MyD88 were all increased in human eyes with GA. They then showed that blocking any of these components could prevent retinal degeneration in multiple disease models. The researchers are excited that blocking these pathways could herald a new potential therapy for GA, for which there is no approved treatment.

Ambati is working with iVeena Pharmaceuticals, Inc. of Salt Lake City to commercialize therapies for geographic atrophy. iVeena can be contacted at info@i-veena.com.

Authors on the paper include Ambati as well as Valeria Tarallo, Yoshio Hirano, Bradley D. Gelfand, Sami Dridi, Nagaraj Kerur, Younghee Kim, Won Gil Cho, Hiroki Kaneko, Benjamin J. Fowler, Sasha Bogdonaovich, Romulo J.C. Albuquerque, Judi Z. Baffi and Mark E. Kleinman, all of the UK Department of Opthalmology and Visual Science. Additional authors include: William W. Hauswirth and Vince A. Chiodo of the University of Florida; Jennifer F. Kugel, James A. Goodrich and Steven L. Ponicsan of the University of Colorado; Gautaum Chaudhuri of Meharry Medical College; Michael P. Murphy of the MRC Mitochondrial biology Unit; Joshua L. Dunaief of the University of Pennsylvania; Balamurali K. Ambati of the University of Utah and the Veterans Affairs Salt Lake City Healthcare System; Yuichiro Ogura of the Nagoya City University Graduate School of Medical Sciences, Japan; Jae Wook Yoo and Dong-ki Lee of Sungkyunkwan University, Korea; Patrick Provost of Université Laval, Quebec; David R. Hinton of the University of Southern California; and Gabriel Nunez of the University of Michigan Medical School.

Ambati is also the Dr. E. Vernon and Eloise C. Smith Endowed Chair in Macular Degeneration Research.

This research was supported by the National Eye Institute, the Doris Duke Charitable Foundation, the Burroughs Wellcome Fund, and Research to Prevent Blindness.

Allison Elliott | EurekAlert!
Further information:
http://www.uky.edu

More articles from Health and Medicine:

nachricht Inselspital: Fewer CT scans needed after cerebral bleeding
20.03.2019 | Universitätsspital Bern

nachricht Building blocks for new medications: the University of Graz is seeking a technology partner
19.03.2019 | Karl-Franzens-Universität Graz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>