Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research identifies changes in neural circuits underlying self-control during adolescence

06.01.2020

Penn study shows developing brain networks support cognition in youth

The human brain is organized into circuits that develop from childhood through adulthood to support executive function--critical behaviors like self-control, decision making, and complex thought.


A study examining the relationship between structural and functional brain connectivity in 727 participants ages 8-23 years old revealed marked remodeling of structure-function coupling during youth.

Credit: Graham Baum

These circuits are anchored by white matter pathways which coordinate the brain activity necessary for cognition. However, little research exists to explain how white matter matures to support activity that allows for improved executive function during adolescence--a period of rapid brain development.

Researchers from the Lifespan Brain Institute of the Perelman School of Medicine at the University of Pennsylvania and Children's Hospital of Philadelphia applied tools from network science to identify how anatomical connections in the brain develop to support neural activity underlying these key areas. The findings were published in the Proceedings of the National Academy of Sciences.

"By charting brain development across childhood and adolescence, we can better understand how the brain supports executive function and self-control in both healthy kids and those with different mental health experiences," said the study's senior author Theodore Satterthwaite, MD, an assistant professor of Psychiatry at Penn.

"Since abnormalities in developing brain connectivity and deficits in executive function are often linked to the emergence of mental illness during youth, our findings may help identify biomarkers of brain development that predict cognitive and clinical outcomes later in life."

In this study, the researchers mapped structure-function coupling--the degree to which a brain region's pattern of anatomical connections supports synchronized neural activity.

This could be thought of like a highway, where the anatomical connections are the road and the functional connections are the traffic flowing along those roads. Researchers mapped and analyzed multi-modal neuroimaging data from 727 participants ages 8 to 23 years, and three major findings emerged.

First, the team found that regional variability in structure-function coupling was inversely related to the complexity of the function a given brain area is responsible for. Higher structure-function coupling was found in parts of the brain that are specialized for processing simple sensory information, like the visual system.

In contrast, there was lower structure-function coupling in complex parts of the brain that are responsible for executive function and self-control, which require more abstract and flexible processing.

Results showed that structure-function coupling also aligned with known patterns of brain expansion over the course of primate evolution. Previous work comparing human, ape, and monkey brains has showed that sensory areas like the visual system are highly conserved across primate species and have not expanded much during recent evolution.

In contrast, association areas of the brain, such as the prefrontal cortex, have expanded dramatically over the course of primate evolution. This expansion may have allowed for the emergence of uniquely complex human cognitive abilities.

The team found that the brain areas which expanded rapidly during evolution had lower structure-function coupling, while simple sensory areas that have been conserved in recent evolution had higher structure-function coupling.

Researchers also found that structure-function coupling increased throughout childhood and adolescence in complex frontal brain regions. These are the same regions that tend to have lower baseline structure-function coupling, are expanded compared to monkeys, and are responsible for self-control.

The prolonged development of structure-function coupling in these regions may allow for improved executive function and self-control that develops into adulthood.

Indeed, the team found that higher structure-function coupling in the lateral prefrontal cortex--a complex brain area which plays important roles in self-control--was associated with better executive function.

"These results suggest that executive functions like impulse control--which can be particularly challenging for children and adolescents--rely in part on the prolonged development of structure-function coupling in complex brain areas like the prefrontal cortex," explained lead author Graham Baum, PhD, a postdoctoral fellow at Harvard University, who was a Penn neuroscience PhD student during the time of the research. "This has important implications for understanding how brain circuits become specialized during development to support flexible and appropriate goal-oriented behavior."

###

Additional Penn co-authors include Zaixu Cui, David R. Roalf, Bart Larsen, Matthew Cieslak, Philip A. Cook, Cedric H. Xia, Tyler M. Moore, Kosha Ruparel. Desmond Oathes, Russell T. Shinohara, Raquel E. Gur, Ruben C. Gur, and Danielle S. Bassett.

This work was supported by the National Institute of Mental Health (F31MH115709, R01MH113550, MH089983, MH089924, R01MH107703, R01MH112847, R01MH107235, P50MH096891, K01MH102609, R01NS085211, RF1MH116920). Additional support was provided by the Lifespan Brain Institute.

Penn Medicine is one of the world's leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a $7.8 billion enterprise.

The Perelman School of Medicine has been ranked among the top medical schools in the United States for more than 20 years, according to U.S. News & World Report's survey of research-oriented medical schools. The School is consistently among the nation's top recipients of funding from the National Institutes of Health, with $425 million awarded in the 2018 fiscal year.

The University of Pennsylvania Health System's patient care facilities include: the Hospital of the University of Pennsylvania and Penn Presbyterian Medical Center--which are recognized as one of the nation's top "Honor Roll" hospitals by U.S. News & World Report--Chester County Hospital; Lancaster General Health; Penn Medicine Princeton Health; and Pennsylvania Hospital, the nation's first hospital, founded in 1751. Additional facilities and enterprises include Good Shepherd Penn Partners, Penn Home Care and Hospice Services, Lancaster Behavioral Health Hospital, and Princeton House Behavioral Health, among others.

Penn Medicine is powered by a talented and dedicated workforce of more than 40,000 people. The organization also has alliances with top community health systems across both Southeastern Pennsylvania and Southern New Jersey, creating more options for patients no matter where they live.

Hannah Messinger | EurekAlert!
Further information:
http://dx.doi.org/10.1073/pnas.1912034117

Further reports about: Brain Activity human brain monkey brains neural circuits self-control sensory

More articles from Health and Medicine:

nachricht Possible Alzheimer's breakthrough suggested
22.01.2020 | Case Western Reserve University

nachricht Body's natural signal carriers can help melanoma spread
21.01.2020 | University of Eastern Finland

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New roles found for Huntington's disease protein

Crucial role in synapse formation could be new avenue toward treatment

A Duke University research team has identified a new function of a gene called huntingtin, a mutation of which underlies the progressive neurodegenerative...

Im Focus: A new look at 'strange metals'

For years, a new synthesis method has been developed at TU Wien (Vienna) to unlock the secrets of "strange metals". Now a breakthrough has been achieved. The results have been published in "Science".

Superconductors allow electrical current to flow without any resistance - but only below a certain critical temperature. Many materials have to be cooled down...

Im Focus: Programmable nests for cells

KIT researchers develop novel composites of DNA, silica particles, and carbon nanotubes -- Properties can be tailored to various applications

Using DNA, smallest silica particles, and carbon nanotubes, researchers of Karlsruhe Institute of Technology (KIT) developed novel programmable materials....

Im Focus: Miniature double glazing: Material developed which is heat-insulating and heat-conducting at the same time

Styrofoam or copper - both materials have very different properties with regard to their ability to conduct heat. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz and the University of Bayreuth have now jointly developed and characterized a novel, extremely thin and transparent material that has different thermal conduction properties depending on the direction. While it can conduct heat extremely well in one direction, it shows good thermal insulation in the other direction.

Thermal insulation and thermal conduction play a crucial role in our everyday lives - from computer processors, where it is important to dissipate heat as...

Im Focus: Fraunhofer IAF establishes an application laboratory for quantum sensors

In order to advance the transfer of research developments from the field of quantum sensor technology into industrial applications, an application laboratory is being established at Fraunhofer IAF. This will enable interested companies and especially regional SMEs and start-ups to evaluate the innovation potential of quantum sensors for their specific requirements. Both the state of Baden-Württemberg and the Fraunhofer-Gesellschaft are supporting the four-year project with one million euros each.

The application laboratory is being set up as part of the Fraunhofer lighthouse project »QMag«, short for quantum magnetometry. In this project, researchers...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

 
Latest News

New self-assembled monolayer is resistant to air

22.01.2020 | Life Sciences

Ultrafast camera takes 1 trillion frames per second of transparent objects and phenomena

22.01.2020 | Power and Electrical Engineering

Mosquitoes are drawn to flowers as much as people -- and now scientists know why

22.01.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>