Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Research May Aid Treatment of Multiple Myeloma Patients

24.01.2013
A study led by Robert G. Hawley, Ph.D., professor and chair of the department of anatomy and regenerative biology at the George Washington University (GW) School of Medicine and Health Sciences (SMHS), may help predict which patients with multiple myeloma will respond better to certain treatments.
The study, titled “Identification of an ABCB1 (P-glycoprotein)-positive carfilzomib-resistant myeloma subpopulation by the pluripotent stem cell fluorescent dye CDy1,” was published in the American Journal of Hematology and is available online at: http://bit.ly/VWDIgT.

Multiple myeloma, the second most common blood cancer in the United States, is an incurable malignancy involving the white blood cells that normally produce antibodies. As the disease progresses, the multiple myeloma cells accumulate in the bone marrow, causing painful bone lesions and preventing normal blood cell production.

“Our hope is that the fluorescent assay we have developed will help physicians monitor the newest treatment option for multiple myeloma patients and determine how well it is working,” said Hawley.

Hawley and his team of researchers reported a test that could be used to detect the multiple myeloma cells that survive chemotherapy and are responsible for disease relapse (referred to as tumor-propagating cells).

The researchers tested the hypothesis that the tumor-propagating cells in multiple myeloma exhibit stem cell-like properties that confer resistance to the chemotherapeutic agents used to treat the patients. The team’s long-term goal is to characterize these so-called ‘cancer stem cells’ in order to develop new targeted therapies that will eradicate the cells and cure the disease. As a first step toward this goal, the research team used a new stem cell imaging dye CDy1, and they isolated pure populations of CDy1-bright and CDy1-dim cells from multiple myeloma cell lines by fluorescence-activated cell sorting (a specialized application of flow cytometry).
These multiple myeloma populations were then characterized using RNA-seq ‘deep-sequencing’ gene expression analysis. Through this next-generation genomics approach, the researchers demonstrated that the CDy1-bright cells did indeed exhibit increased expression of many genes associated with stem cell activity. However, they also noted that the ABCB1 gene, which encodes the P-glycoprotein efflux transporter responsible for multi-drug resistance, was highly expressed in the CDy1-dim population. In functional studies, the investigators determined that dim CDy1 staining was due to the fact that the dye was being efficiently pumped out of the cells by the ABCB1 transporter.

Before the implementation of novel treatment regimens for multiple myeloma over the past decade, ABCB1-associated multi-drug resistance was routinely observed in patients who received conventional chemotherapy containing drugs that are ABCB1 substrates. With this in mind, Dr. Hawley and his colleagues examined new anticancer agents and discovered that high levels of ABCB1 conferred resistance to the second-in-class drug carfilzomib which is currently undergoing evaluation in multiple myeloma clinical trials. Moreover, increased resistance to carfilzomib in sensitive multiple myeloma cells following drug selection was associated with upregulation of ABCB1 cell-surface expression which correlated with increased transporter activity as measured by CDy1 efflux.

Of special note, carfilzomib (marketed under the brand name Kyprolis) recently received accelerated approval by the U.S. Food and Drug Administration for the treatment of multiple myeloma patients who have received at least 2 prior therapies and whose disease continues to worsen. Therefore, the next phase of the project, which is supported by a pilot research grant awarded in 2012 by The Dr. Cyrus and Myrtle Katzen Cancer Research Center at GW, will be to translate the laboratory findings to the clinic. This work, which will be carried out in collaboration with Imad Tabbara, M.D., professor of medicine at GW SMHS, will involve screening multiple myeloma patients to determine whether the CDy1 assay can help guide treatment decisions or predict which patients will respond better to carfilzomib.

“I first became interested in this subject as a graduate student at the Ontario Cancer Institute in the early 1980’s,” said Hawley. “However, I became disheartened as a principal investigator in the late 1990’s when we were unable to cure the disease in a mouse model using cutting-edge cancer gene therapy, and I stopped working in this area. Despite recent therapeutic advances, multiple myeloma remains incurable. About a year and a half ago, I had a conversation with Robert Siegel, M.D., professor of medicine at GW SMHS and director of the Katzen Cancer Research Center, who encouraged me to enter the field again, and I am really happy that I did.”

Hawley’s team of researchers includes lead coauthors Teresa Hawley, B.S., director of the GW Flow Cytometry Core Facility, and Irene Riz, Ph.D., assistant research professor of anatomy and regenerative biology, along with Louis DePalma, M.D., professor of pathology and of anatomy and regenerative biology, and Weiqun Peng, Ph.D., associate professor of physics and of anatomy and regenerative biology, together with collaborators Jun Zhu, Ph.D., director of the DNA Sequencing and Computational Biology Core at the National Heart, Lung and Blood Institute of the National Institutes of Health, and Young-Tae Chang, Ph.D., head of the Laboratory of Bioimaging Probe Development at the National University of Singapore Agency for Science, Technology and Research.

To interview Dr. Hawley about his research, please contact Lisa Anderson at lisama2@gwu.edu or 202-994-3121.

About the School of Medicine and Health Sciences

Founded in 1825, the GW School of Medicine and Health Sciences (SMHS) was the first medical school in the nation’s capital and is the 11th oldest in the country. Working together in our nation’s capital, with integrity and resolve, the GW SMHS is committed to improving the health and well-being of our local, national and global communities.

Lisa Anderson | EurekAlert!
Further information:
http://www.smhs.gwumc.edu
http://www.gwumc.edu/news/newsitems.cfm?neID=957&account=SMHS

More articles from Health and Medicine:

nachricht The cytoskeleton of neurons has been found to be involved in Alzheimer's disease
18.01.2019 | University of the Basque Country

nachricht Bioinspired nanoscale drug delivery method developed by WSU, PNNL researchers
10.01.2019 | Washington State University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Additive manufacturing reflects fundamental metallurgical principles to create materials

18.01.2019 | Materials Sciences

How molecules teeter in a laser field

18.01.2019 | Life Sciences

The cytoskeleton of neurons has been found to be involved in Alzheimer's disease

18.01.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>