Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

International initiative to study viruses implicated in type I diabetes launched in London

11.12.2007
The Virus in Diabetes International Study Group (VIDIS Group) announces today its formation and plans to launch an initiative to study in detail the relation between viruses and type I diabetes in childhood.

The new group was instigated by ten international experts who met at the Novartis Foundation in London last month to discuss recent evidence that a common viral infection may be triggering the disease and the possibility of developing a vaccine to protect individuals at risk.

“This area of diabetes research has been neglected for far too long,” says Professor Keith Taylor, of the Centre for Diabetes and Metaboloic Medicine at Barts and The London. “It is essential to follow up today’s very promising lines of research if we hope to cut the increasing burden of this disease in childhood.” These thoughts were echoed by other meeting participants, including Professor Abner Notkins of the National Institutes of Health, Washington, USA.

Type1 diabetes currently affects several million children worldwide and its incidence is rising steadily. The VIDIS Group aims to foster collaboration between research workers and look for common ways forward. “If a virus is involved, then vaccination as a preventive measure is a realistic possibility,” adds Professor Taylor.

The nature of the triggering agent in children with diabetes has long been debated. Studies in the 1960s first suggested that, the start of the disease was often associated with the coxsackie virus, a common childhood infection.

Recent epidemiological studies from Finnish scientists suggest that diabetic children are infected with these viruses long before the disease is diagnosed. And researchers in Scotland, Italy and Finland have detected coxsackie viruses in the pancreas of diabetic children at post mortem, confirming an early report.

It is now over 80 years since insulin was discovered. Although it has made the lives of people with type I diabetes possible, insulin cannot prevent its disabling complications. “We need to know what destroys the insulin-producing cells in the first place. This is why those of us gathered in London felt that our work on viruses should be extended – with urgency,” says Professor Taylor.

Professor Keith Taylor | alfa
Further information:
http://www.ryebay.fsnet.co.uk

More articles from Health and Medicine:

nachricht Lung images of twins with asthma add to understanding of the disease
06.12.2019 | University of Western Ontario

nachricht Between Arousal and Inhibition
06.12.2019 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing a digital twin

University of Texas and MIT researchers create virtual UAVs that can predict vehicle health, enable autonomous decision-making

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location...

Im Focus: The coldest reaction

With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction

The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...

Im Focus: How do scars form? Fascia function as a repository of mobile scar tissue

Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.

Fibroblasts kit - ready to heal wounds

Im Focus: McMaster researcher warns plastic pollution in Great Lakes growing concern to ecosystem

Research from a leading international expert on the health of the Great Lakes suggests that the growing intensity and scale of pollution from plastics poses serious risks to human health and will continue to have profound consequences on the ecosystem.

In an article published this month in the Journal of Waste Resources and Recycling, Gail Krantzberg, a professor in the Booth School of Engineering Practice...

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Lung images of twins with asthma add to understanding of the disease

06.12.2019 | Health and Medicine

A robot and software make it easier to create advanced materials

06.12.2019 | Materials Sciences

Scientist identify new marker for insecticide resistance in malaria mosquitoes

06.12.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>