Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Possible Genetic Predictor for Response to Lithium Augmentation in Depressed Patients

06.12.2007
As in most fields of medicine, psychiatry researchers are working to identify specific types of patients, through their individual genetic variations, that may better benefit from particular drugs or combinations of drugs than other patients.

A new study, published in Biological Psychiatry’s December 1st issue, investigated whether depressed patients with a particular genetic variation would better respond to the addition of lithium to their treatment regimen, as opposed to an antidepressant-only treatment.

Adli and colleagues recruited acutely depressed patients who were unresponsive to an antidepressant-only treatment, and augmented their therapy with lithium, the most common medication used to treat bipolar disorder. They then genotyped these patients for variations in the GSK3B gene. This gene codes for the enzyme glycogen synthase kinase 3-beta, which is inhibited by lithium. Mazda Adli, M.D., corresponding author on the project, explains their findings: “[We] found that antidepressant non-responders with depression show a significantly better response to a subsequent lithium augmentation if they carry at least one C-allele as opposed those patients carrying two T-alleles, which is in line with the previous findings regarding this genetic polymorphism.” In other words, patients who carried a specific genetic variation, the C-allele, were more likely to get better with the addition of lithium to their treatment than patients with other variations of the GSK3B gene.

John H. Krystal, M.D., Editor of Biological Psychiatry and affiliated with both Yale University School of Medicine and the VA Connecticut Healthcare System, comments, “Over the past several years, preclinical studies have suggested that GSK3-beta was a key molecular switch related to the clinical effectiveness of lithium. This hypothesis is supported by this report from Adli et al.

They find that variation in the GSK3-beta gene is related to lithium response in patients, further implicating GSK3-beta as a potential target for antidepressant treatment.” Dr. Adli adds, “If replicable, the findings of this study could be an important step towards an individually tailored antidepressive treatment plan for patients with depression as well as for the identification of possible new drug targets.”

Jayne Dawkins | alfa
Further information:
http://www.elsevier.com/

More articles from Health and Medicine:

nachricht New method uses just a drop of blood to monitor lung cancer treatment
19.10.2018 | Osaka University

nachricht Photoactive bacteria bait may help in fight against MRSA infections
12.10.2018 | Purdue University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

 
Latest News

Nanocages in the lab and in the computer: how DNA-based dendrimers transport nanoparticles

19.10.2018 | Life Sciences

Thin films from Braunschweig on the way to Mercury

19.10.2018 | Physics and Astronomy

App-App-Hooray! - Innovative Kits for AR Applications

19.10.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>