Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

(Blue) lighting up the human brain at work

28.11.2007
The human brain uses light not just to support vision but also to support alertness and cognitive tasks. Which colours of light are most effective and where in the brain these non-visual effects can be seen was previously not known. Now researchers at the Cyclotron Research Centre at the University of Liege and the Surrey Sleep Research Centre at the University of Surrey have ‘shed some novel light’ on these issues by using functional magnetic resonance (fMRI) brain imaging while the participant were engaged on a working memory task.

In a research paper published in PLoS ONE it is reported that it is not just any light that is most effective but rather light of a particular short wavelength (480 nm, i.e. blue light rather than violet or green).

This is in accordance with the hypothesis that such non-visual effects are mediated by a recently discovered ancient photoreceptor which is particularly sensitive to blue light. More importantly maybe, by using very short exposures to light (

The brain areas that responded to blue light exposures included areas in the brain stem and the thalamus. These areas are involved in the regulation of very basic aspects of brain function, such as the regulation of alertness and sleepiness. Other areas that responded to light included the hippocampus and amygdala. These areas are well known to be involved in the regulation of higher functions such as memory and emotion. In summary, these data establish a brain basis for the wide ranging effects of light on how we perform and feel. The data have implications for the development of better artificial light environments and a better understanding of the effects of light on the human brain in general. Dr Gilles Vandewalle, lead author, comments that “it was impressive to see how only a minor difference in wavelength could have such a dramatically different effect on our fMRI results.”

Dr Pierre Maquet, co-senior author, comments that “as a neurologist I am impressed by the wide ranging effects of light on brain function and the range of brain areas that are affected. This is an area that certainly warrants further investigation.”

Professor Derk-Jan Dijk, co-senior author remarks, “Humans are day-active animals, and maybe it is after all not so surprising to a biologist that blue light has these profound effects on our brain. After all, natural daylight contains quite a bit of blue light. We had simply forgotten about it because we are so preoccupied by the ‘visual’ effects of light, which are not particularly dependent on blue light. We now know that other aspects of brain function are.’

Stuart Miller | alfa
Further information:
http://www.surrey.ac.uk

More articles from Health and Medicine:

nachricht UIC researchers find unique organ-specific signature profiles for blood vessel cells
18.02.2020 | University of Illinois at Chicago

nachricht Remdesivir prevents MERS coronavirus disease in monkeys
14.02.2020 | NIH/National Institute of Allergy and Infectious Diseases

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Journey to the center of Mars

20.02.2020 | Physics and Astronomy

Laser writing enables practical flat optics and data storage in glass

20.02.2020 | Physics and Astronomy

New graphene-based metasurface capable of independent amplitude and phase control of light

20.02.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>