Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wound Healing - Discovery Of A New Therapeutic Strategy Against Hypertrophic Scarring

13.05.2002


Wound healing appears generally a banal event, but in a certain proportion of cases it evolves inappropriately in hypertrophic scars resulting in skin and organ deformations. This is due to an excess of wound contraction, a phenomenon that generally helps to close the wound. Hypertrophic scarring is observed frequently in burned patients.



For the past 30 years, Professor Giulio Gabbiani and his team are interested in the role of myofibroblasts in wound contraction. Myofibroblasts, specialized fibroblasts neo expressing the protein alpha-smooth muscle actin, are instrumental in wound contraction during normal wound healing. Tissue shortening is then stabilized by synthesis of extracellular matrix, collagen in particular. More precisely, alpha-smooth muscle actin within myofibroblasts becomes organized in filamentous bundles, called stress fibers, that allow the retractile movement producing wound contraction. During hypertrophic scarring, skin deformations depend on the inappropriate action of these stress fibers that for unknown reasons persist even after the epithelialization of the wound.

The team of the University of Geneva has isolated a sequence of alpha-smooth muscle actin that once injected in isolated myofibroblasts inhibits their contraction. Moreover, the same sequence applied to an experimental wound diminishes significantly wound contraction and skin deformation. Based on these results Giulio Gabbiani and his team suggest that this alpha-smooth muscle actin sequence has a potential therapeutic activity. The pharmaceutical industry UCB-Bioproducts has patented this sequence and is working on the production of commercial preparation. The clinical tests should start approximately at the beginning of next year. This discovery is the outcome of a 30 year long research.

Giulio Gabbiani | alphagalileo
Further information:
http://www.unige.ch/presse/a10communiques.html

More articles from Health and Medicine:

nachricht New approach for targeted cancer immunotherapy
30.07.2020 | Universität Basel

nachricht A new way to target cancers using 'synthetic lethality'
28.07.2020 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

Im Focus: NYUAD astrophysicist investigates the possibility of life below the surface of Mars

  • A rover expected to explore below the surface of Mars in 2022 has the potential to provide more insights
  • The findings published in Scientific Reports, Springer Nature suggests the presence of traces of water on Mars, raising the question of the possibility of a life-supporting environment

Although no life has been detected on the Martian surface, a new study from astrophysicist and research scientist at the Center for Space Science at NYU Abu...

Im Focus: Manipulating non-magnetic atoms in a chromium halide enables tuning of magnetic properties

New approach creates synthetic layered magnets with unprecedented level of control over their magnetic properties

The magnetic properties of a chromium halide can be tuned by manipulating the non-magnetic atoms in the material, a team, led by Boston College researchers,...

Im Focus: A new method to significantly increase the range and stability of optical tweezers

Scientists of Tomsk Polytechnic University jointly with a team of the V.E. Zuev Institute of Atmospheric Optics of the Siberian Branch of the Russian Academy of Sciences have discovered a method to increase the operation range of optical traps also known

Optical tweezers are a device which uses a laser beam to move micron-sized objects such as living cells, proteins, and molecules. In 2018, the American...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Novel approach improves graphene-based supercapacitors

03.08.2020 | Information Technology

Germany-wide rainfall measurements by utilizing the mobile network

03.08.2020 | Information Technology

Drug discovery: First rational strategy to find molecular glue degraders

03.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>