Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

SARS: a model disease

22.11.2007
A new model to predict the spread of emerging diseases has been developed by researchers in the US, Italy, and France. The model, described in the online open access journal BMC Medicine, could give healthcare professionals advance warning of the path an emerging disease might take and so might improve emergency responses and control.

Severe acute respiratory syndrome (SARS) spread rapidly in 2002-2003, revealing just how vulnerable we might be to emerging diseases and how global transportation is critical to the spread of an epidemic.

Now, Vittoria Colizza and Alessandro Vespignani of Indiana University, Bloomington, USA and the Institute for Scientific Interchange Foundation, in Turin, Italy, and colleagues in France have developed a predictive model of the spread of emerging diseases based on actual travel and census data for more than three thousand urban areas in 220 countries. The model provides predictions of how likely an outbreak will be in each region and how widespread it might become. The research highlights just how the accuracy in predicting the spreading pattern of an epidemic can be related to clearly identifiable routes by which the disease could spread.

In order to assess the predictive power of their model, the researchers turned to the historical records of the global spread of the SARS virus. They evaluated the initial conditions before the disease had spread widely, based on the data for the arrival of the first patient who left mainland China for Hong Kong, and for the resulting outbreak there. They then simulated the likelihood that SARS would emerge in specific countries thereafter, as brought by infectious travelers. The simulated results fit very accurately with the actual pattern of the spread of SARS in 2002. Analysis of the results also identified possible paths of the virus' spread along the routes of commercial air travel, highlighting some preferred channels which may serve as epidemic pathways for the global spread of the disease.

"The presented computational approach shows that the integration of long-range mobility and demographic data provides epidemic models with a predictive power that can be consistently tested," the researchers explain. "This computational strategy can be therefore considered as a general tool in the analysis and forecast of the global spreading of emerging diseases."

BMC Medicine publishes original research articles, technical advances and study protocols in any area of medical science or clinical practice. BMC Medicine (ISSN 1741-7015) is indexed/tracked/covered by PubMed, MEDLINE, BIOSIS, Scopus, CAS, Google Scholar and Thomson Scientific (ISI).

BioMed Central (http://www.biomedcentral.com) is a UK-based, independent online publishing house committed to providing open access to peer-reviewed biological and medical research. This commitment is based on the view that immediate free access to research and the ability to freely archive and reuse published information is essential to the rapid and efficient communication of science.

BioMed Central currently publishes over 180 journals across biology and medicine. In addition to open-access original research, BioMed Central also publishes reviews, commentaries and other non-original-research content. Depending on the policies of the individual journal, this content may be open access or provided only to subscribers.

Charlotte Webber | alfa
Further information:
http://www.biomedcentral.com/bmcmed/

More articles from Health and Medicine:

nachricht Lung images of twins with asthma add to understanding of the disease
06.12.2019 | University of Western Ontario

nachricht Between Arousal and Inhibition
06.12.2019 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electronic map reveals 'rules of the road' in superconductor

Band structure map exposes iron selenide's enigmatic electronic signature

Using a clever technique that causes unruly crystals of iron selenide to snap into alignment, Rice University physicists have drawn a detailed map that reveals...

Im Focus: Developing a digital twin

University of Texas and MIT researchers create virtual UAVs that can predict vehicle health, enable autonomous decision-making

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location...

Im Focus: The coldest reaction

With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction

The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...

Im Focus: How do scars form? Fascia function as a repository of mobile scar tissue

Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.

Fibroblasts kit - ready to heal wounds

Im Focus: McMaster researcher warns plastic pollution in Great Lakes growing concern to ecosystem

Research from a leading international expert on the health of the Great Lakes suggests that the growing intensity and scale of pollution from plastics poses serious risks to human health and will continue to have profound consequences on the ecosystem.

In an article published this month in the Journal of Waste Resources and Recycling, Gail Krantzberg, a professor in the Booth School of Engineering Practice...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

The Arctic atmosphere - a gathering place for dust?

09.12.2019 | Earth Sciences

New ultra-miniaturized scope less invasive, produces higher quality images

09.12.2019 | Information Technology

Discovery of genes involved in the biosynthesis of antidepressant

09.12.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>