Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers investigate ways to detect lupus-associated kidney disease

15.11.2007
High urinary levels of certain molecules might have the potential to serve as biomarkers for a potentially life-shortening kidney ailment caused by the autoimmune disease lupus, UT Southwestern Medical Center researchers have found.

“Our studies suggest a quartet of molecules may have potential diagnostic significance,” said Dr. Chandra Mohan, professor of internal medicine and senior author of a study available online at the Journal of Immunology. “Given that early intervention in lupus nephritis is associated with better treatment outcome, it is imperative that disease activity in the kidney be diagnosed as early as possible.”

Lupus is a chronic autoimmune disease in which the immune system attacks the body’s cells and tissues. In a normal immune system, foreign intruders are recognized by special immune cells that produce antibodies. In patients with lupus, however, the antibodies created start to attack the body itself. When the antibodies attack the kidneys, nephritis occurs, often shortening a patient’s life expectancy.

Dr. Mohan and colleagues screened urine from mice with lupus nephritis for the presence of four compounds – VCAM-1, P-selection, TNFR-1 and CXCL 16. Previous research had suggested that these molecules are elevated in animal models of antibody-mediated nephritis. Dr. Mohan and his research team determined that the mice harbored increased levels of all four molecules in the urine, particularly at the peak of their lupus-associated kidney disease.

The most reliable method now available for monitoring renal disease in lupus patients is to measure the level of protein excreted in urine. As part of their study, the researchers also tested the urine of lupus patients and found that they not only had high protein levels in their urine, but also elevated levels of all four compounds.

“It would be very beneficial to detect the presence of nephritis early in order to administer therapies to stop the immune system from destroying the kidney,” said Dr. Mohan. “There is an urgent need for a biomarker that one could potentially use to predict the onset of nephritis. That is what we’re trying to discover with this research.”

Dr. Mohan said further studies are in progress to ascertain if checking these molecule levels might be more effective than monitoring protein levels to predict kidney disease in lupus patients.

“The ability to detect these molecules in urine could potentially have tremendous impact on clinical diagnostics. Not only is urine a convenient body fluid to procure; in some clinical settings it may be the only fluid available,” he said.

Some of the compounds might play a critical role in deciphering potential drug targets for therapeutic intervention. Although more research is needed, blocking one or more of these molecules might offer relief to patients suffering from lupus nephritis, Dr. Mohan said.

In humans, lupus can cause life-threatening damage not only to the kidneys, but also to the lungs, heart, central nervous system, joints, blood vessels and skin. It can be associated with severe fatigue, joint pain, skin rashes, hair loss and neurological problems. Although treatable symptomatically, there is currently no cure for the disease, which affects up to 1 million people in the U.S.

Erin Prather Stafford | EurekAlert!
Further information:
http://www.utsouthwestern.edu/receivenews
http://www.utsouthwestern.edu/utsw/cda/dept353744/files/422561.html

More articles from Health and Medicine:

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

nachricht Direct conversion of non-neuronal cells into nerve cells
03.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>