Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jefferson neuroscientists show anti-inflammation molecule helps fight MS-like disease

14.11.2007
An immune system messenger molecule that normally helps quiet inflammation could be an effective tool against multiple sclerosis (MS). Neurology researchers led by Abdolmohamad Rostami, M.D., Ph.D., professor and chair of the Department of Neurology at Jefferson Medical College of Thomas Jefferson University and the Jefferson Hospital for Neuroscience in Philadelphia, have found that the protein interkeukin-27 (IL-27) helped block the onset or reverse symptoms in animals with an MS-like disease.

The results suggest that IL-27 may someday be part of a therapy to temper over-active immune responses, which are thought to be at the heart of MS, an autoimmune disease (in which the body attacks its own tissue) affecting the central nervous system. The Jefferson neuroscientists report their findings November 11, 2007 in the journal Nature Immunology. The paper first appears in an advance online publication.

In MS, one of the most common neurological diseases affecting young adults, the myelin coating of nerve fibers becomes inflamed and scarred. As a result, “messages” cannot be sent through the nervous system. Dr. Rostami’s team was trying to understand the mechanisms of how immune responses damage the myelin sheath and axons in the brain.

They had previously observed that IL-27, a signaling molecule called a cytokine, could suppress IL-17, another cytokine, and inflammation. They also knew that in other MS models, mice that lacked receptors for IL-27 developed excessive inflammation.

Dr. Rostami, who is also director of the Neuroimmunology Laboratory in the Department of Neurology at Jefferson Medical College, Denise Fitzgerald, Ph.D., a postdoctoral research fellow in Dr. Rostami’s laboratory, and their colleagues used an animal model of MS called experimental autoimmune encephalomyelitis (EAE) for the investigation.

When the scientists gave IL-27 to the experimental mice, it significantly suppressed active disease. They saw similar effects from IL-27 in cultured cells that were transferred into “naïve” animals, which then produced significantly milder disease. At the same time, they also showed that IL-27 enhanced the production of IL-10, a crucial anti-inflammatory cytokine.

“We previously showed that IL-27 could suppress IL-17,” he notes. “Here we also show that IL-27 can enhance the production of IL-10. These may both be different and complementary mechanisms by which IL-27 can suppress EAE.”

The findings suggest that increasing IL-27 concentrations might raise IL-10 levels, and help quell an over-active immune response. “This is the first time that we have direct evidence that by actively giving IL-27 like a drug, we can suppress EAE in mice.”

Dr. Rostami explains that after an MS flare-up, patients recover from the disease, though the reasons are poorly understood. “We think that one of the ways that recovery from a disease flare-up occurs is that part of the immune system is shut off, suppressing the immune response in the brain. IL-27 appears to be crucial in this process,” he says.

The team would like to study MS patients’ blood samples to see if similar processes are at work, Dr. Rostami notes. “If we get similar findings in human disease, then perhaps IL-27 could be used therapeutically as a compound to suppress inflammation in the brains of MS patients.”

Steve Benowitz | EurekAlert!
Further information:
http://www.jefferson.edu

More articles from Health and Medicine:

nachricht New nanomedicine slips through the cracks
24.04.2019 | University of Tokyo

nachricht Sugar entering the brain during septic shock causes memory loss
23.04.2019 | Rensselaer Polytechnic Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unprecedented insight into two-dimensional magnets using diamond quantum sensors

For the first time, physicists at the University of Basel have succeeded in measuring the magnetic properties of atomically thin van der Waals materials on the nanoscale. They used diamond quantum sensors to determine the strength of the magnetization of individual atomic layers of the material chromium triiodide. In addition, they found a long-sought explanation for the unusual magnetic properties of the material. The journal Science has published the findings.

The use of atomically thin, two-dimensional van der Waals materials promises innovations in numerous fields in science and technology. Scientists around the...

Im Focus: Full speed ahead for SmartEEs at Automotive Interiors Expo 2019

Flexible, organic and printed electronics conquer everyday life. The forecasts for growth promise increasing markets and opportunities for the industry. In Europe, top institutions and companies are engaged in research and further development of these technologies for tomorrow's markets and applications. However, access by SMEs is difficult. The European project SmartEEs - Smart Emerging Electronics Servicing works on the establishment of a European innovation network, which supports both the access to competences as well as the support of the enterprises with the assumption of innovations and the progress up to the commercialization.

It surrounds us and almost unconsciously accompanies us through everyday life - printed electronics. It starts with smart labels or RFID tags in clothing, we...

Im Focus: Energy-saving new LED phosphor

The human eye is particularly sensitive to green, but less sensitive to blue and red. Chemists led by Hubert Huppertz at the University of Innsbruck have now developed a new red phosphor whose light is well perceived by the eye. This increases the light yield of white LEDs by around one sixth, which can significantly improve the energy efficiency of lighting systems.

Light emitting diodes or LEDs are only able to produce light of a certain colour. However, white light can be created using different colour mixing processes.

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...
All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

Hopkins researchers ID neurotransmitter that helps cancers progress

26.04.2019 | Life Sciences

Unprecedented insight into two-dimensional magnets using diamond quantum sensors

26.04.2019 | Physics and Astronomy

Liquid crystals in nanopores produce a surprisingly large negative pressure

26.04.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>