Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research suggests targeted treatment strategies for lupus

14.11.2007
New research provides clues about the causes of lupus symptoms and suggests specific new targeted treatment strategies, according to Nilamadham Mishra, M.D., from Wake Forest University Baptist Medical Center, in presentations this week at the American College of Rheumatology in Boston.

The studies looked at premature atherosclerosis in lupus patients as well as accelerated cell death that seems to be behind many of the disease’s symptoms. Lupus is an autoimmune disorder that can involve the joints, kidneys, heart, lungs, brain and blood. An estimated two million Americans have a form of lupus.

In one study, Mishra and colleagues looked at the potential mechanisms of premature atherosclerosis, which is one of the leading causes of death and disability in lupus patients. Even when they take drugs to lower their cholesterol, lupus patients still develop fatty buildups in their vessels, which can lead to heart attack and stroke.

Previous research by Mishra found that a new class of drugs being developed (histone deacetylase inhibitors) were effective at preventing atherosclerosis in mice prone to develop the disease. In the current study, Mishra and colleagues explored whether it is a specific histone deacetylase, number 9 (HDAC9), that causes the problem.

Histones are considered the master regulators in gene expression, and Mishra was the first to establish an association between abnormal histone codes and the complications of lupus in a mouse model of lupus.

In the current study, the researchers found that in atherosclerosis-prone mice, there is more HDAC9 than usual in the macrophages, which are cells within the artery walls that collect cholesterol and can lead to atherosclerosis. They found that these increased levels of HDAC9 increase inflammation in the arteries as well as the buildup of fatty tissue that may break off and cause a heart attack or stroke.

In mice macrophages that were genetically engineered to have no HDAC9, the researchers found the production of chemicals that promote inflammation were reduced and levels of cholesterol deposits were reduced compared to mice that produced normal levels of HDAC9.

“With the drug that inhibits HDAC9, we were able to decrease inflammation and remove cholesterol at the same time,” said Mishra. “This study suggests that specifically targeting HDAC9 without inhibiting other histone deacetylases will be helpful for atherosclerosis.”

In a separate study, scientists found a potential explanation for why cells in lupus patients die at an increased rate and accumulate in tissues. This accumulation of cells is believed to trigger the inflammation that causes symptoms.

“We have not previously understood why cells die at an increased rate,” said Mishra. “This new study suggests both a possible mechanism and treatment.”

The study examined microRNAs, chains of ribonucleic acid that are involved in cell proliferation and cell death. The goal was to explore the possibility that aberrant expression of microRNAs is responsible for the abnormal cell death in lupus patients.

The scientists analyzed blood samples from five patients with lupus and seven healthy people of the same ages and sex at two points during a three-month period. A particular microRNA, miR-16, was consistently increased in lupus patients compared to the healthy participants. The scientists suspect that having too much miR-16 inhibits genes that control cell death and may also inhibit natural cell progression – resulting in the accumulation in tissues.

“Understanding this connection may lead to targeted treatments to decrease levels of miR-16,” said Mishra.

Karen Richardson | EurekAlert!
Further information:
http://www.wfubmc.edu

More articles from Health and Medicine:

nachricht Study tracks inner workings of the brain with new biosensor
16.08.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Foods of the future
15.08.2018 | Georg-August-Universität Göttingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>