Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA technology helps predict and prevent future pandemic outbreaks

08.11.2007
Research presented at the American Society of Tropical Medicine and Hygiene Meeting in Philadelphia

With the help of 14 satellites currently in orbit and the National Aeronautics and Space Administration’s (NASA) Applied Sciences Program, scientists have been able to observe the Earth’s environment to help predict and prevent infectious disease outbreaks around the world.

The use of remote sensing technology aids specialists in predicting the outbreak of some of the most common and deadly infectious diseases today such as Ebola, West Nile virus and Rift Valley Fever. The ability of infectious diseases to thrive depends on changes in the Earth’s environment such as the climate, precipitation and vegetation of an area.

Through orbiting satellites, data is collected daily to monitor environmental changes. That information is then passed on to agencies such as the Centers for Disease Control and Prevention and the Department of Defense who then apply the data to predict and track disease outbreaks and assist in making public health policy decisions. “The use of this technology is not only essential for the future of curbing the spread of infectious diseases,” explains John Haynes, public health program manager for the NASA Earth Science Applied Sciences Program. “NASA satellites are also a cost-effective method for operational agencies since they are already in orbit and in use by scientists to collect data about the Earth’s atmosphere.”

Remote sensing technology not only helps monitor infectious disease outbreaks in highly affected areas, but also provides information about possible plague-carrying vectors -- such as insects or rodents -- globally and within the U.S. The Four Corners region, which includes Colorado, New Mexico, Arizona, and Utah, is a highly susceptible area for plague and Hanta virus outbreaks, and by understanding the mixture of vegetation, rainfall and slope of the area, scientists can predict the food supply of disease transmitting vectors within the region and the threat they cause to humans. Because plague is also considered a bioterrorism agent, NASA surveillance systems enable scientists to decipher if an outbreak was caused by natural circumstances or was an act of bioterrorism.

A particular infectious disease being targeted by NASA is malaria, which affects 300-500 million persons worldwide, leaving 40 percent of the world at risk of infection. The Malaria Modeling and Surveillance Project utilizing NASA satellite technology is currently in use by the Armed Forces Research Institute of Medical Sciences in Thailand and the U.S. Naval Medical Research Unit located in Indonesia. Data collected at these locations is combined and used to monitor environmental characteristics that effect malaria transmission in Southeast Asia and other tropical and subtropical regions. Malaria surveillance provides public health organizations with increased warning time to respond to outbreaks and assistance in the preparation and utilization of pesticides, which leads to a reduction in drug resistant strains of malaria and damage to the environment.

“NASA satellite remote sensing technology has been an important tool in the last few years to not only provide scientists with the data needed to respond to epidemic threats quickly, but to also help predict the future of infectious diseases in areas where diseases were never a main concern,” says Mr. Haynes. “Changing environments due to global warming have the ability to change environmental habitats so drastically that diseases such as malaria may become common in areas that have never been previously at-risk.”

Jennifer Bender | EurekAlert!
Further information:
http://www.environics-usa.com

More articles from Health and Medicine:

nachricht Photoactive bacteria bait may help in fight against MRSA infections
12.10.2018 | Purdue University

nachricht 15 emerging technologies that could reduce global catastrophic biological risks
10.10.2018 | Johns Hopkins Center for Health Security

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

 
Latest News

Elucidating cuttlefish camouflage

18.10.2018 | Life Sciences

Robot-assisted sensor system for quality assurance of press-hardened components

17.10.2018 | Trade Fair News

Sensory Perception Is Not a One-Way Street

17.10.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>