Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Laser-Based Imaging for Early Diagnosis of Rheumatoid Arthritis

24.04.2002


Study Documents Imaging Technique’s Accuracy in Detecting the Course of Finger Joint Inflammation



Findings Indicate Need to Combine Laser Imaging with Other Diagnostic Tools


A team of specialists in laser medicine has developed an imaging technique with the potential to dramatically improve the early diagnosis and treatment of Rheumatoid Arthritis (RA). According to the team’s study, which is published in the May 2002 issue of Arthritis & Rheumatism, this innovative laser-based technology can detect the course of finger joint inflammation in RA patients—with an accuracy rate of up to 83%.



A chronic, progressive disease, RA often leads to early disability and joint deformity. Recent studies have suggested that this devastating disease might well be prevented, or at least delayed, by early diagnosis and treatment. Given the widespread availability of effective therapeutic approaches, early diagnosis could change the quality of life for countless RA patients. Until now, conventional radiography has been the standard method of identifying destructive arthritis. This method, however, routinely overlooks early changes of erosion, the destructive process in cartilage and bone that can lead to deformity. While other imaging procedures, such as ultrasound or magnetic resonance imaging (MRI), offer possible alternatives for uncovering early evidence of arthritis and its progression, they have definite downsides. MRI can be costly and lacks standardization; ultrasound is time consuming and observers need training.

“The new laser imaging technique is easy to handle, inexpensive, and noninvasive,” attests research team leader Alexander K. Scheel. “It therefore has many advantages over conventional imaging and provides new information about joint status.”

The study was performed with an innovative laser device created by the Department of Medical Physics and Laser Medicine at the Free University of Berlin in cooperation with Siemens. Over a six-month period, 22 RA patients, ranging in age from 22 to 75 and representing both genders, committed to an ongoing examination of soft tissue changes and acute inflammation of their proximal finger joints. Positioned above the finger joint and working in conjunction with a sensitive camera, the laser device captured the optical characteristics of normal and inflamed joints then processed them through a picture software program. The inflammatory status of 60 of the 72 joints examined was classified correctly by laser imaging, confirmed through rigorous comparisons of hand radiographs and clinical evaluations. Researchers rated the laser technique 80% for sensitivity, 89% for specificity, and 83% for accuracy in detecting inflammatory changes in affected joints.

The results indicate that laser-based imaging can contribute significantly to diagnostic capabilities. Providing an affordable, accessible, and reproducible assessment of inflammatory joint changes, this unique imaging technique can help rheumatologists pinpoint RA of small finger joints and swiftly determine the most effective treatment.

Yet, Scheel and his team readily admit that laser imaging alone cannot replace other diagnostic methods. Although it can play a pivotal role in sensitive follow-up analysis of joint inflammation and provide important information about the response to medication, laser imaging, at this stage, only offers limited help for an individual diagnosis of early arthritis due to anatomic differences of the joint structures. Accurate diagnosis still depends on clinical examination, including measurements of joint circumference.

“Laser imaging may supplement our imaging armament and help us to better assess our arthritis patients,” Scheel observes. “However, additional studies with more patients and a comparison with other, established imaging techniques have to be performed before the overall usefulness of this new technology can be conclusively evaluated.”

Joanna Gibson | alphagalileo

More articles from Health and Medicine:

nachricht Novel mathematical framework provides a deeper understanding of how drugs interact
13.11.2019 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

nachricht Researchers find new potential approach to type 2 diabetes treatment
11.11.2019 | Weill Cornell Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

Im Focus: Distorted Atoms

In two experiments performed at the free-electron laser FLASH in Hamburg a cooperation led by physicists from the Heidelberg Max Planck Institute for Nuclear physics (MPIK) demonstrated strongly-driven nonlinear interaction of ultrashort extreme-ultraviolet (XUV) laser pulses with atoms and ions. The powerful excitation of an electron pair in helium was found to compete with the ultrafast decay, which temporarily may even lead to population inversion. Resonant transitions in doubly charged neon ions were shifted in energy, and observed by XUV-XUV pump-probe transient absorption spectroscopy.

An international team led by physicists from the MPIK reports on new results for efficient two-electron excitations in helium driven by strong and ultrashort...

Im Focus: A Memory Effect at Single-Atom Level

An international research group has observed new quantum properties on an artificial giant atom and has now published its results in the high-ranking journal Nature Physics. The quantum system under investigation apparently has a memory - a new finding that could be used to build a quantum computer.

The research group, consisting of German, Swedish and Indian scientists, has investigated an artificial quantum system and found new properties.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

Smart lasers open up new applications and are the “tool of choice” in digitalization

30.10.2019 | Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

 
Latest News

Magnetic tuning at the nanoscale

13.11.2019 | Physics and Astronomy

At future Mars landing spot, scientists spy mineral that could preserve signs of past life

13.11.2019 | Physics and Astronomy

Necessity is the mother of invention: Fraunhofer WKI tests utilization of low-value hardwood for wood fiberboard

13.11.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>