Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Infrared imaging for sleep apnea diagnosis shows promise

24.10.2007
Remote heat imaging identifies sleep disorder without disturbing patients

Sleep apnea is commonly diagnosed by way of measuring airflow by nasal pressure, temperature, and/or carbon dioxide, through sensors placed in the nose. However, this method is uncomfortable to some and can potentially disturb sleep. But new research, presented at CHEST 2007, the 73rd annual international scientific assembly of the American College of Chest Physicians (ACCP), shows that remote infrared imaging can monitor airflow and accurately detect abnormalities during sleep, without ever coming in contact with the patient. The study indicates that the new method is ideal because it is portable and can monitor sleep in a natural environment.

“Polysomnography is a diagnostic test, which establishes the presence or absence of sleep disorders. But standard methods have the potential to significantly disturb a patient’s sleep pattern, so what we see in the lab may not be a true representation of the patient’s sleep habits,” said lead study author Jayasimha Murthy, MD, Assistant Professor of Medicine, University of Texas Health Science Center at Houston, TX. “However, remote infrared imaging is a noncontact method, so there is minimal interference with the patient. In fact, this system can be designed to where the patient isn’t even aware that monitoring is taking place.”

In the first study of its kind, Dr. Murthy and his colleagues from the University of Texas Health Science Center at Houston, the University of Houston, and Memorial Hermann Sleep Disorders Center in Houston, TX, evaluated the efficacy of remote infrared imaging (IR-I) in 13 men and women without known sleep apnea. Researchers recorded the heat signals expired from patients’ nostrils or mouth using an infrared camera during 1 hour of polysomnography. To minimize any bias, airflow channels were recorded and analyzed separately. Results were then compared with those obtained through the conventional methods of sleep apnea diagnosis, including nasal pressure, nasal-oral thermistors, and capnography.

“The underlying principle of monitoring the relative changes in airflow based on the changing of the infrared heat signal is similar to that of the traditional thermistor,” Dr. Murthy explained. “However, the biggest difference is that the thermistor is placed in the subject’s nostril while the infrared camera is placed 6 to 8 feet from the patient’s head. Also, this method allows us to have recorded data, so we can go back and extract the airflow data after the completion of the study, which we can’t do with conventional sensors.”

Upon completion, results showed that IR-I detected 20 sleep-disordered breathing events, compared with 22 events detected by the nasal-oral thermistor, and 19 events detected by nasal pressure. Given the outcome, researchers suggest that IR-I was in near-perfect agreement with conventional methods and that it represents a noncontact alternative to standard nasal-oral thermistors. Though Dr. Murthy acknowledges that this study represents a preliminary stage of testing, he is optimistic about the future of infrared imaging for sleep disorder diagnosis.

“The results from this study will greatly impact the development of this technology,” he said. “While implementation of this technology for clinical studies is still far away, these early results are encouraging enough for us to pursue this further.”

“Sleep apnea is a debilitating condition that affects millions of Americans and can lead to other, life-threatening illnesses,” said Alvin V. Thomas, Jr., MD, FCCP, President of the American College of Chest Physicians. “It is important for physicians and researchers to continue to explore new diagnostic tools in order to detect and treat this sleep disorder at the earliest possible stage.”

Deana Busche | EurekAlert!
Further information:
http://www.chestnet.org

More articles from Health and Medicine:

nachricht Study tracks inner workings of the brain with new biosensor
16.08.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Foods of the future
15.08.2018 | Georg-August-Universität Göttingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

Protein interaction helps Yersinia cause disease

21.08.2018 | Life Sciences

Biosensor allows real-time oxygen monitoring for 'organs-on-a-chip'

21.08.2018 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>