Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research on structure of bones raises questions for treatment of osteoporosis

17.10.2007
Researchers have discovered that the structure of human bones is vastly different than previously believed – findings which will have implications for how some debilitating bone disorders are treated.

Researchers from the University of Cambridge, the Animal Health Trust in Newmarket, and the BAM Federal Institute of Materials Research and Testing, Berlin, have discovered that the characteristic toughness and stiffness of bone is predominantly due to the presence of specialized sugars, not proteins, as had been previous believed. Their findings could have sweeping impacts on treatments for osteoporosis and other bone disorders.

Scientists have long held the view that collagen and other proteins were the key molecules responsible for stabilizing normal bone structure. That belief has been the basis for some existing medications for bone disorders and bone replacement materials. At the same time, researchers paid little attention to the roles of sugars (carbohydrates) in the complex process of bone growth.

For this research, funded by the Biotechnology and Biological Sciences Research Council (BBSRC), the UK and Berlin teams studied mineralization in horse bones using an analysis tool called nuclear magnetic resonance (NMR). They found that sugars, particularly proteoglycans (PGs) and glycosaminoglycans (GAGs), appear to play a role which is as important as proteins in controlling bone mineralization - the process by which newly-formed bone is hardened with minerals such as calcium phosphate.

Osteoporosis is a chronic and widespread disease in which mineral formation is disturbed, leading to brittle bones, pain, and increased fractures. Osteoarthritis, a hallmark of which is joint cartilage and GAG depletion, is also accompanied by abnormal bone mineralization. Both of these diseases can be debilitating, often crippling, to older people – a problem which will only intensify as our population ages. Among the young, especially sportsmen and women, bone and joint injuries prove the most intractable and are also the ones most likely to develop into afflictions (such as osteoarthritis) later in life.

Dr David Reid, from the Duer Group, Department of Chemistry,at the University of Cambridge, who played a significant part in the research, said, “We believe our findings will alter some fundamental preconceptions of bone biology. On a practical level they unveil novel targets for drug discovery for bone and joint diseases, new biomarkers for diagnosis, and new strategies for developing synthetic materials that could be used in orthopaedics.

“They may also strengthen the rationale for the current popularity of over-the-counter joint and bone pain remedies such as glucosamine and chondroitin, which are based on GAG sugar molecules.”

Genevieve Maul | EurekAlert!
Further information:
http://www.cam.ac.uk

More articles from Health and Medicine:

nachricht New antibody analysis accelerates rational vaccine design
09.08.2018 | Scripps Research Institute

nachricht Distrust of power influences choice of medical procedures
01.08.2018 | Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>