Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mould monitored

15.04.2002


Fungi that trigger allergies go under scrutiny.



Industry researchers have produced the largest study yet of airborne fungi in US buildings. The fungal fingerprints may help scientists understand their role in triggering allergies and other medical conditions.

Exposure to spores released by moulds is known to cause or worsen allergies and trigger asthma episodes in sufferers. Spores enter buildings through air ducts or open windows and can thrive in moist indoor conditions.


Brian Shelton and his colleagues at the microbiology laboratory PathCon in Norcross, Georgia, found Stachybotrys chartarum, a fungi thought to be toxic, in 6% of indoor air and in 1% of the outdoor air from buildings surveyedsup>1.

"Finding some of these organisms is not uncommon," says Shelton. He hopes the study will provide baseline figures on the natural occurrence of fungi. This could be of use in future studies on the health effects of particular species.

"The list of identified fungal species is certainly a contribution to science," says David Miller, who studies allergens at Carleton University in Canada. But he cautions against extrapolating detectable quantities of fungi to an individual’s exposure level.

Isolation of the mould does not necessarily indicate exposure to toxins that they produce. It is not known whether spores produce toxins as the mould does, or exactly what their health effects are, Shelton says.

Other rare health effects, such as bleeding lungs, have been attributed to Stachybotrys chartarum - dubbed ’toxic mould’. But the link is disputed: "There is no good evidence that mould in indoor environments is a significant health problem other than being a potential cause of allergy and asthma," says Richard Wasserman, allergist and spokesman for the American Academy of Allergy, Asthma, and Immunology.

The controversy is, however, highlighting mould-related heath issues. "Mould is replacing asbestos as the next issue for industrial hygiene," says Henry Lick, president of the American Industrial Hygiene Association.

Mould inspection

The PathCon lab received over 12,000 samples during air-quality investigations in 1996 to 1998 - primarily from indoor samples of 1,700 buildings across the United States. This allowed it to provide detailed lists and concentrations of fungi for individual regions, including moulds.

The survey measured culturable fungi, which are those that can be isolated on specially designed laboratory media. Even though cultures provide the best available measures, they are subject to limitations because not all fungi can be grown in this way.

"The number of viable spores detected by this method is extremely low," says Miller. Shelton counters that those that can’t grow on culture aren’t of concern in buildings.

A National Academy of Sciences report in 2000, called Clearing the Air, identified a need for a standardized method, other than culturable fungi, to document exposure to fungal allergens.

The authors concede that this is primarily a descriptive study. However, it provides profiles that would probably not come from any other source, given the cost and logistics involved in collecting samples.

References
  1. Shelton, B.G. Kirkland, K.H. Flanders, W.D. Morris, G.K. Profiles of airborne fungi in buildings and outdoor environments in the United States. Applied and Environmental Microbiology, 68, 1743 - 1753, (2002).


VIRGINIA GEWIN | © Nature News Service

More articles from Health and Medicine:

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

nachricht Direct conversion of non-neuronal cells into nerve cells
03.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>