Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel cartilage repair therapy

11.04.2002


Diseases involving irremediable tissue damage of the musculoskeletal system account today for about 15% of hospital admissions in developed countries. With the ageing of the population, this is believed to gain significantly in importance in the coming years.



The majority of the disorders affecting the musculoskeletal system are the joint diseases, in particular osteoarthritis. The latter disease process is typically initiated and associated with defects of the articular cartilage and the underlying bone, causing pain as well as functional impairment. Early tissue repair resulting in the functional restoration of damaged joint surfaces is expected to prevent the development of osteoarthritis, and slow down the progression of the disease.

Different solutions and therapies are currently available for the local treatment of joint surface defects. Ranging from small-scaled arthroscopic debridement with microfracture or osteochondral grafting, to radical surgery involving total joint replacement by implantation of prosthesis. However, as the lifetime of joint prosthesis is limited, and with the ageing of the population, there is an increased need for more long lasting biological repair procedures.


Recent therapeutic approaches aim at repairing the articular cartilage by implantation of expanded cartilage cells. Cells used for the procedure are often autologous chondrocytes (i.e. a patient’s own cartilaginous cells), obtained from the patient`s involved joint via biopsy. Main difficulties with this technology include, amongst others, the so called “de-differentiation” of the cells which, during the in vitro expansion, loose their proper function i.e. the potential to form stable hyaline cartilage. The expanded cells instead can only make disorganized low quality fibro-cartilaginous tissue having different functional properties than the original articular cartilage covering the joints. Many existing therapeutic tissue regeneration methods therefore may lead to failure in mid- and long-term and, sometimes, may even aggravate the local damage.

TiGenix improves the Autologuous Chondrocyte Implantation procedure

The recently founded Belgian company TiGenix has been able to overcome this difficulty, unblocking herewith the way for successful and long-lasting tissue regeneration. Focusing on joint-surface defects and based on its own research, the company has been able to consistently grow the required hyaline-type cartilage in vivo. TiGenix has discovered specific molecular markers which are used to predict the ability of a cell population to form stable hyaline cartilage in vivo.

From these research findings, TiGenix has subsequently developed the cellular therapeutic product ChondroCelect®. ChondroCelect® is a proprietary technology using the patient`s own cells, resulting in a consistent and reproducible cell product, expected to improve the outcome of an autologous chondrocyte implantation procedure.
ChondroCelect® recently entered a prospective randomized clinical trial in 9 orthopedic centers in Belgium. The company actively prepares the extension of the trial to medical centers in other European countries. The commercial launch of ChondroCelect® is foreseen in 2004.

Therapies of next generation

The repair of chondral (cartilage) defects is the first application of TiGenix` research. The company has also identified specific markers that will enable the selection of adult multipotent precursor cells as the basis for next-generation tissue repair. The latter include therapeutic solutions for osteochondral (cartilage and underlying bone) defects and ultimately novel treatment options for osteoarthritis.

Who is TiGenix ?

TiGenix was founded in February 2000 as a spin-off of the University of Leuven (Belgium) by Frank Luyten, M.D., Ph.D., Professor at the Faculty of Medicine of the University of Leuven and Chairman of the Department of Rheumatology at the same university; and Ir. Gil Beyen, Partner at Arthur D. Little in Brussels and specialist in the healthcare sector.

TiGenix is a biomedical company with the mission of developing innovative products for successful repair and functional regeneration of damaged human tissue. The company aims at becoming one of the leading players in the field of musculoskeletal tissue engineering.

To do so, TiGenix is built on a multidisciplinary technology platform, combining expertise in cell and developmental biology, biomaterials and biosurgery. Various collaborations and strategic partnerships have been put in place to ensure the technological advancement and further developments of TiGenix, including with leading research centers, a bioinformatics company as well as Belgian and international experts as scientific advisors.

Currently Tigenix employs 20 people of which 11 are active in Research & Development. The new offices are located near the city of Leuven, while the company`s own GMP cell expansion facilities are located in the premises of the nearby Leuven University hospital center.

To date, TiGenix has been financed through seed capital, in a round led by Gemma Frisius Fund, and through technology grants from the Flemish government. To finance its further development and expansion strategy, the company is currently raising additional equity capital through a private placement.

Patrick Valkenberg | alphagalileo

More articles from Health and Medicine:

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

nachricht Direct conversion of non-neuronal cells into nerve cells
03.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>