Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New method reveals substances on surfaces of any kind

07.09.2007
Last August German police discovered about 50 tons of rotten meat on the premises of a wholesaler in Bavaria. Because the risk of rotten meat turning up in grocery stores everywhere is not to be underestimated, the importance of efficient food quality monitoring is clear.

However, reliable measurement methods that enable large numbers of samples to be analysed quickly and economically would need to be in place in order to make comprehensive monitoring a reality. In the latest issue of the scientific journal Angewandte Chemie, the group led by Renato Zenobi, Professor of Analytical Chemistry at the Organic Chemistry Laboratory of ETH Zurich, has presented a method that successfully meets these requirements.

Based on a standard instrument

The new procedure of analysis represents a further development of the method recently published by the group in which the researchers successfully detected various substances in the breath in a simple manner. Using their enhanced method, they can now also very precisely track down substances on surfaces of any kind. Both methods are based on what is called a ‘quadrupole time-of-flight mass spectrometer’ (QTOF mass spectrometer). Zenobi explains that “such measuring instruments are routinely used in many areas nowadays.” Samples for QTOF mass spectrometry are normally presented in solution. The solution is electrosprayed, with the additional aid of a desolvation gas. The tiny droplets give rise to ions that are characteristic of the substance to be analysed and which the QTOF instrument measures.

The ETH Zurich researchers have now almost turned the principle on its head: instead of studying the substances in the solution, they now examine the substances present in the desolvation gas assisting the spray. With the newly-developed method nitrogen is blown from a small nozzle onto a sample surface. As the gas strikes the surface it desorbs semi-volatile substances. The “en-riched” gas stream is then fed into the mass spectrometer where the absorbed substances can be precisely analysed.

Equipment modification in less than an hour

Professor Zenobi says «There is nothing special about the new method from a technical viewpoint.» Huanwen Chen, who has developed the method during his post-doctoral studies in Zenobi’s group, impressively demonstrated this when together with his supervisor he presented the new method to a company. Within one hour Chen had modified their mass spectrometer so that it could be used to analyse the surface of any kind of object.

However, the remarkable aspect of the new method is the wide variety of possibilities it opens up. «One particular strength of our approach is that even the surfaces of living organisms can be examined. It only takes a few seconds to measure a single sample; so large numbers of random samples can be routinely analysed», Zenobi says. For meat samples the scientists were also able to show that the sample material does not even need to be thawed.

Numerous possible applications

The studies carried out by the researchers on the skin of various test persons lead in quite a different direction. Traces of nicotine, coffee and explosives could all be detected on the skin. According to Zenobi «The method’s strength is that it is fast and non-invasive, and needs no special sample preparation.» In view of the numerous possible applications, it is not surprising that the new method is of interest not only to foodstuffs technologists and safety experts but also to medical professionals and drugs investigators in sport.

Roman Klingler | alfa
Further information:
http://www.zenobi.ethz.ch/

More articles from Health and Medicine:

nachricht Study tracks inner workings of the brain with new biosensor
16.08.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Foods of the future
15.08.2018 | Georg-August-Universität Göttingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>