Pancreatic cancer fights off immune attack

The ability to discriminate between friend and foe or between “self“ and “foreign” is vital for a functioning immune system. There are numerous protective mechanisms at work to save the body’s own tissue from attacks by misguided immune cells. A pivotal role is played by regulatory T cells (Treg cells), which prevent immune reactions against the body’s own structures by suppressing the aggressiveness of particular immune cells called T helper cells.

Malignant tumors actively attract Treg cells and, thus, slow down immune defense to protect themselves against elimination. This is suggested by results just published by Associate Professor Dr. Philipp Beckhove jointly with colleagues from the German Cancer Research Center in collaboration with Professor Jürgen Weitz, Dr. Hubertus Schmitz-Winnenthal and other colleagues from the Heidelberg University Hospitals.

In tissue samples of pancreatic cancer the researchers found a much higher number of Treg cells than in samples obtained from regions of the organ that were not affected by cancer. For other immune cells, such as T helper cells, they found no such differences.

Cells of the immune system, including regulatory T cells, are called to their site of action by specific “address molecules“ on the surface of blood vessel cells (endothelial cells). The presence of address molecules is the signal for immune cells patrolling in the bloodstream to squeeze through the vessel wall in order to enter the adjacent tissue. Beckhove and colleagues have shown that Treg cells easily pass through a layer of endothelial cells isolated from tumor tissue. If, however, the endothelial cells originate from healthy tissue, then a significantly lower number of Treg cells make their way through the layer of cells. The researchers also discovered why this is so: Endothelial cells from tumor tissue carry significantly more address molecules on their surface than vessel cells from healthy regions of the pancreas. When the investigators made these adresses invisible using specific antibodies, the Treg accumulation in the tumor tissue was stopped.

“Treatment possibilities for pancreatic carcinoma, in particular, are still insufficient. Specific antibodies preventing the accumulation of Treg cells in the tumor and, thus, strengthening immune defense, might be a useful therapeutic option,” says Phillip Beckhove to explain the relevance of these results.

The task of the Deutsches Krebsforschungszentrum in Heidelberg (German Cancer Research Center, DKFZ) is to systematically investigate the mechanisms of cancer development and to identify cancer risk factors. The results of this basic research are expected to lead to new approaches in the prevention, diagnosis and treatment of cancer. The Center is financed to 90 percent by the Federal Ministry of Education and Research and to 10 percent by the State of Baden-Wuerttemberg. It is a member of the Helmholtz Association of National Research Centers (Helmholtz-Gemeinschaft Deutscher Forschungszentren e.V.).

Media Contact

Press Officer alfa

More Information:

http://www.dkfz.de

All latest news from the category: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors