Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New hope for Huntington's sufferers

23.08.2007
A major breakthrough in the understanding and potential treatment of Huntington's disease has been made by scientists at the University of Leeds.

Researchers in the University’s Faculty of Biological Sciences have discovered that one of the body's naturally occurring proteins is preventing 57 genes from operating normally in the brains of Huntington's sufferers. In addition, the destructive nature of this protein could potentially be halted using drugs that are already being used to help cancer patients.

“This is a really exciting breakthrough,” says researcher Dr Lezanne Ooi. “It's early days, but we believe our research could lead to radical changes in treatment for Huntington's sufferers. The fact that these cancer drugs have already been through the clinical trials process should speed up the time it takes for this research to impact directly on patients.”

Huntington's is an inherited degenerative neurological disease that affects between 6500 and 8000 people in the UK and up to 8 people out of every 100,000 in Western countries. Any person whose parent has Huntington's has a 50-50 chance of inheriting the faulty gene that causes it and everyone with the defective gene will, at some point, develop the disease.

It is characterised by a loss of neurons in certain regions of the brain and progressively affects a sufferer’s cognition, personality and motor skills. In its later stages, sufferers almost certainly require continual nursing care. Secondary diseases, such as pneumonia are the actual cause of death, rather than the disease itself.

Dr Ooi's research has identified the effects of one of the body's proteins on the neurons of Huntington's sufferers. Neurons are usually protected by the protein BDNF (brain derived neurotrophic factor), whose many functions also include encouraging the growth and differentiation of new neurons and synapses. However, in Huntington’s sufferers, the repressor protein known as REST - which is usually found only in certain regions of the brain – enters the nucleus of the neuron and decreases the expression of BDNF.

She has also been studying some of the enzymes which assist the function of this protein. It is these enzymes that provide the mechanism for the protein to wreak havoc in the brains of Huntington's sufferers, and that are already being targeted in certain cancer drugs.

Currently, the symptoms of Huntington's can be managed through medication to help with loss of motor control and speech therapy but there is no definitive treatment. This research provides a first step in developing a treatment regime that may halt the onset of the disease.

“Huntington’s is a devastating illness that affects whole families. Those who know they’ve inherited the faulty gene live in a shadow of uncertainty over how long their symptoms start to develop. It can also be particularly cruel since every child born to a parent that has the HD gene is at 50% risk of having inherited the gene,” says Cath Stanley, Head of Care Services at the Huntington’s Disease Association.

“As such, any developments in the understanding of this disease are welcome, but this breakthrough is particularly exciting as it opens up an avenue for researching a possible treatment using drugs that are already available, rather than starting from scratch.”

Dr Ooi's research was funded by The Wellcome Trust and carried out in collaboration with the University of Milan and King's College London. The paper has been published in the Journal of Neuroscience.

Clare Elsley | alfa
Further information:
http://reporter.leeds.ac.uk/press_releases/current/huntington.htm

More articles from Health and Medicine:

nachricht Study tracks inner workings of the brain with new biosensor
16.08.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Foods of the future
15.08.2018 | Georg-August-Universität Göttingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>