Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Draining away brain's toxic protein to stop Alzheimer's

14.08.2007
Scientists are trying a plumber’s approach to rid the brain of the amyloid buildup that plagues Alzheimer’s patients: Simply drain the toxic protein away.

That’s the method outlined in a paper published online August 12 by Nature Medicine. Scientists from the University of Rochester Medical Center show how the body’s natural way of ridding the body of the substance is flawed in people with the disease. Then the team demonstrated an experimental method in mice to fix the process, dramatically reducing the levels of the toxic protein in the brain and halting symptoms. The team is now working on developing a version of the protein that could be tested in people with the disease.

The approach doesn’t take direct aim at the pathology that is ubiquitous in the Alzheimer’s patients’ brains, where amyloid-beta forms a toxic plaque. Instead, researchers take an indirect approach, focusing not on the brain but rather on a protein that sops up amyloid-beta in the body, where it’s regarded as harmless. The scientists found that if they increase the body’s ability to soak up amyloid, the brain responds, causing levels of the substance in the brain – the real target – to plummet.

“There is a dynamic equilibrium between the levels of amyloid-beta in the blood and in the brain,” said neuroscientist Berislav Zlokovic, M.D., Ph.D., the leader of the team. “If we are able to lower the levels of amyloid-beta circulating in blood by sequestering more of it there, then the brain should follow and lower its levels too. This is exactly what we found.”

The team concentrated its efforts around a protein known as sLRP (soluble low-density lipoprotein receptor-related protein). The team discovered that in healthy people, the protein binds to and neutralizes anywhere from 70 to 90 percent of the amyloid-beta that is circulating in the body.

The team also found that sLRP is doing only a fraction of the job in Alzheimer’s patients that it does in healthy people. Levels of sLRP in people with Alzheimer’s were about 30 percent lower than in healthy people, and the sLRP that was present was almost three times as likely to be damaged compared to the same protein in healthy people. As a result, the Alzheimer’s patients had on average three to four times as much loose, unbound amyloid-beta floating in their bloodstreams – high levels that would likely also be reflected in the brain.

Zlokovic’s group decided to try to reduce amyloid-beta levels in the body by synthesizing an altered, super-potent form of sLRP that binds amyloid-beta more efficiently than natural sLRP. In blood samples from patients with Alzheimer’s disease, the modified version of sLRP, known as LRP-IV, soaked up and virtually eliminated amyloid-beta. The compound had an even more dramatic effect in mice with features of Alzheimer’s disease: LRP-IV lowered the levels of amyloid-beta in their brains by 85 to 90 percent. The mice that received the compound also had improved learning and memory compared to mice that did not receive LRP-IV, and they had 65 percent more blood flow in their brains in response to brain stimulation – a flick of their whiskers.

The team is now working with a company created by Zlokovic, Socratech, to create a form of LRP-IV that could be tested in people. Zlokovic hopes to have such a product ready for testing within two years.

Zlokovic, a scientist widely recognized for demonstrating that blood vessels, blood flow, and the blood-brain barrier are all central to the development of Alzheimer’s disease, likens the new approach to how statins help people with heart disease. Statins lower excess cholesterol in the bloodstream before the cholesterol can glom onto a blood vessel and cause problems with blood flow; in the same way, LRP-IV lowers amyloid-beta and indirectly lowers levels of amyloid-beta in the brain.

It was more than a decade ago that Zlokovic first identified LRP, a molecule that acts like an escort service in the brain, shuttling amyloid-beta out of the brain and into the body. The amyloid plaques that speckle the brains of Alzheimer’s patients are a hallmark of the disease, and where they come from and how to get rid of them has long been a focus of scientists.

“We used to think that Alzheimer’s disease was a problem with the production of too much amyloid-beta, but it’s become clear in recent years that the problem is with faulty clearance of amyloid-beta,” said Zlokovic, professor of Neurosurgery and Neurology and director of the Frank P. Smith Laboratory for Neuroscience and Neurosurgery Research. “We aren’t really talking about massive amounts of amyloid-beta. Even a small malfunction in the elaborate system that carries it into or out of the brain could lead, over years, to accumulate in amounts that damage the brain.”

Tom Rickey | EurekAlert!
Further information:
http://www.urmc.rochester.edu

More articles from Health and Medicine:

nachricht New antibody analysis accelerates rational vaccine design
09.08.2018 | Scripps Research Institute

nachricht Distrust of power influences choice of medical procedures
01.08.2018 | Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>