Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bioengineering To Prevent Iron Deficiency?

10.08.2007
Using selective plant breeding and genetic engineering could be used to reduce the incidence of iron deficiency worldwide by improving the quality of dietary iron, conclude authors of a Seminar in this week’s edition of The Lancet.

Dr Michael Zimmerman, Laboratory for Human Nutrition, Swiss Federal Institute of Technology, Zurich, and colleagues have reviewed published literature worldwide, mainly from the last five years, to prepare the Seminar, which looks at the issue of nutritional iron deficiency in both industrialised and developing countries.

The authors say: “Iron deficiency is one of the leading risk factors for disability and death worldwide, affecting an estimated 2 billion people…the high prevalence of iron deficiency in the developing world has substantial health and economic costs, including poor pregnancy outcome, impaired school performance, and decreased productivity.”

The World Health Organisation (WHO) estimates that 39% of children younger than five years, 48% of children between five and 14 years, 42% of all women, and 52% of pregnant women in developing countries are anaemic, with half having iron deficiency anaemia. WHO also believes that the frequency of iron deficiency in developing countries is around 2.5 times that of anaemia which is not iron deficiency related.

Dietary iron bioavailability (the measure of iron which can be absorbed from food) is low in populations consuming monotonous plant-based diets with little meat – ie. many developing countries. In an analysis of ten developing countries, the median value of physical productivity losses per year due to iron deficiency was around US $0.32 per head, or 0.57% of gross domestic product (GDP) for those nations. In the WHO Africa subregion, it is estimated that if iron fortification reached 50% of the population, it would avert 570,000 disability adjusted life years (DALYs- an international standard for measuring the effects of disability).

Iron deficiency has many reported consequences – children deficient in iron have higher susceptibility to upper respiratory tract infections, and anaemia which can affect their brain, motor activity and general performance in school, whilst adult manual laborers in developing countries were found to be less productive when iron-deficient, and left untreated for hookworm and other infections.

The three main strategies for correcting iron deficiency are supplementation (provision of iron without food), fortification of foods, and the relatively new approach of genetic engineering and plant breeding. The authors say: “Although dietary modification and diversification is the most sustainable approach, change of dietary practices and preferences is difficult, and foods that provide highly bioavailable iron (such as meat) are expensive.”

Supplementation can be targeted to high risk groups and be cost-effective; yet the logistics of distribution and absence of compliance are major limitations. Untargeted supplementation in children in tropical countries, mainly in areas of high transmission of malaria, is associated with increased infections.

Fortification is, say the authors, “probably the most practical, sustainable and cost-effective long-term solution to control iron deficiency at the national level.” The low incidence of iron deficiency anaemia in adolescent and young women in the USA might be at least partly due to consumption of iron-fortified wheat flour. Types of iron used for fortification vary depending on the situation, but in most cases cereal flour is fortified with ferrous sulphate, ferrous fumarate or several other common types of iron. Fortifying powdered milk has also been shown to benefit children in developing countries, with Chile reporting that the frequency of anaemia decreased from 27% to 9% after a powdered milk fortification programme.

However, while fortification is common and has proven benefits, loss of iron from both wheat and rice during the milling process means that keeping the levels of iron acceptable (40mg/kg) is difficult. This is where the authors believe genetic engineering can play a key role – eg. The iron content in rice can be increased two- to three-fold by introduction of the ferritin gene from the soy bean. Another problem – the reduction of bioavailable iron due to high phytate content – could also be solved by introducing genes which increase the activity of phytase enzymes to break down the phytate.

The authors conclude by calling for more data on the functional consequences of iron deficiency, eg. on immune function and cognition in infants and children. Due to the risks of untargeted supplementation in malaria-endemic countries, new strategies are urgently needed to provide additional dietary iron to susceptible infants and children that might not be reached by universal fortification programmes.

They conclude: “Selective plant breeding and genetic engineering are promising new approaches to improve dietary iron bioavailability, however a major challenge is to show that they can increase iron content to nutritionally useful levels and that the additional iron is bioavailable.”

Tony Kirby | alfa
Further information:
http://www.thelancet.com/webfiles/images/clusters/thelancet/press_office/seminar.pdf

More articles from Health and Medicine:

nachricht Study tracks inner workings of the brain with new biosensor
16.08.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Foods of the future
15.08.2018 | Georg-August-Universität Göttingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>