Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Colon cancer a disease of hormone deficiency

02.08.2007
Researchers at the Kimmel Cancer Center at Jefferson in Philadelphia have found new evidence suggesting that colon cancer is actually a disease of missing hormones that could potentially be treated by hormone replacement therapy.

Reporting August 1, 2007 in the journal Gastroenterology, clinical pharmacologist Scott Waldman, M.D., Ph.D., professor and chair of pharmacology and experimental therapeutics at Jefferson Medical College of Thomas Jefferson University, and his co-workers showed that GCC – guanylyl cyclase C, a protein receptor on the surface of intestinal epithelial cells for two hormones, guanylin and uroguanylin, can suppress tumor formation. These hormones regulate the growth of intestinal epithelial cells.

But early in colon cancer development, these growth-controlling hormones are “lost” and not expressed, disrupting GCC’s activity, and, Dr. Waldman believes, contributing to tumor formation. Using two separate mouse models that mimic the development of colon cancer in people, his team showed that GCC signaling blocks such tumors from forming.

According to Dr. Waldman, the group found that GCC stops tumors from forming through two different mechanisms. In one case, it controls cell growth, while in the other, it maintains “regulation of genomic integrity.”

In one mouse cancer model, the animals carried mutations in the APC gene, which causes colon polyps that frequently lead to colon cancer. Mice in the other cancer-development model were exposed to a commonly used experimental cancer-causing agent, azoxymethane. “We modeled both ways that humans develop colon cancer, and studied the effects of a lack of GCC on the incidence of colon cancer development,” he explains.

“We found that in animals that have APC mutations, tumors developed in the colon and small intestine, which is expected,” Dr. Waldman says. “A lack of GCC resulted in both larger tumors and a greater number of tumors in the large intestine.” In the carcinogen model, the absence of GCC caused an increase in both tumor number and size also.

The findings indicate that the mechanism of the increase in tumor development through loss of GCC expression was a combination, in both models, of a loss of genomic integrity and an increase in cell growth. “When you eliminate GCC from cells, they develop a level of genomic instability, where they start accumulating more mutations and lose pieces of genetic material,” he explains.

“Putting those pieces together – exposure to carcinogen or spontaneous mutations in APC – which happens to almost every colorectal cancer patient, and the loss of GCC signaling brought on by a loss of the two hormones in one of the earliest events that occurs in tumor development in the intestine,” he notes, “and it’s a recipe for colon cancer.”

The finding “converts colon cancer from a genetic disease, which is the way we’ve all thought about it, to a disease of hormone insufficiency,” Dr. Waldman says. “It’s a completely different way of thinking about the disease.

“Not only does this give a new paradigm in how we think about the disease, but it gives us a new paradigm for treating the disease – that is, by hormone replacement therapy.

Essentially, this takes the genetic disease and converts it to an endocrine disease, with a hormone solution.” The researchers would like to extend these studies to show that by treating patients with hormone replacement therapy, intestinal cancer formation can either be prevented or treated.

Steve Benowitz | EurekAlert!
Further information:
http://www.jefferson.edu

More articles from Health and Medicine:

nachricht Study tracks inner workings of the brain with new biosensor
16.08.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Foods of the future
15.08.2018 | Georg-August-Universität Göttingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>