Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reducing inflammation plays key role in type 1 diabetes therapy

02.08.2007
Researchers at Beth Israel Deaconess Medical Center (BIDMC) have found that a triple combination therapy consisting of both tolerance-inducing and anti-inflammatory properties is successful in abolishing adverse autoimmunity against insulin-producing cells in a mouse model of Type 1 diabetes.

The findings, which appear in the Online Early Edition of the Proceedings of the National Academy of Sciences (PNAS) this week, offer a possible new prototype for therapies to restore normal blood glucose levels in diabetes patients and suggest a previously unrecognized role for inflammation in the disease.

“Type 1 diabetes is known to develop as a consequence of autoimmune destruction of insulin-producing pancreatic beta cells,” explains senior author Terry Strom, MD, Director of the Transplantation Research Center at BIDMC and Professor of Medicine at Harvard Medical School. “But in addition to the long-recognized role of T-cell-dependent immune-system-mediated islet destruction, this work reveals for the first time that a form of inflammation in fat and muscle [is also acting to] prevent insulin from disposing blood glucose into tissues that require glucose.”

Formerly known as juvenile-onset or insulin-dependent diabetes, Type 1 diabetes develops when the body’s immune cells attack and destroy its own pancreatic beta cells. Without beta cells, the body is unable to produce insulin, a hormone needed to convert glucose into energy. To prevent the development of serious complications, more than 21 million individuals with Type 1 diabetes – primarily children and young adults – must receive as many as three injections of insulin each day.

Previous attempts to treat existing Type 1 diabetes were primarily focused on restoring immune tolerance, which in healthy individuals is achieved when immune system cells “turn off” so as not to overreact and attack one’s own cells. In individuals with Type 1 diabetes, the process of immune tolerance fails to work properly, thereby permitting the self-destruction of the body’s beta cells.

But lead author Maria Koulmanda, MSc, PhD, director of Non-Human Primate Research in BIDMC’s Transplantation Research Center, wondered if there might also be a role for inflammation in the disease process.

“We knew that in cases of type 2 [non-insulin dependent] diabetes, a form of inflammation in muscle and fat prevents insulin from triggering the transfer of glucose from the blood into important insulin-sensitive tissues,” explains Koulmanda, who is also Assistant Professor of Surgery at HMS. “We thought that in addition to autoimmune destruction of insulin-producing cells, there might also be inflammation-induced insulin resistance [in type 1 diabetes.]”

To test this hypothesis, the authors administered a “cocktail” of three separate agents (rapamycin plus agonist IL-2- and antagonist-type, mutant IL-15-related Ig fusion proteins) in a NOD (non-obese diabetes) mouse model of type 1 diabetes. The therapy regimen, which included two novel immunoglobulin-fusion proteins, was aimed at both increasing tolerance and decreasing inflammation.

As predicted, following two to four weeks of treatment, the mice that had received the triple therapy maintained normal levels of blood sugar. In contrast, the control group of diabetic mice did not survive, despite receiving insulin.

The authors then conducted a molecular analysis which confirmed that the treatment had eliminated insulin resistance and relieved inflammation in the animals’ fat and muscle tissues.

“Although the treatment halted the progressive loss of insulin producing cells, the restoration of normal blood glucose levels actually was the result of inflammation being ablated in fat and muscle cells,” explains Strom. “By blocking the inflammation, we were able to restore the animals’ abilities to respond to insulin.”

“Our findings are very promising,” adds Koulmanda. “Type 1 diabetes is a serious disease requiring that children and young adults take insulin two to three times a day.”

And, she adds, despite this arduous therapy, insulin treatment does not prevent the occurrence of serious late-arising complications, including kidney failure, blindness and widespread cardiovascular disease.

“In clinical practice, it is not currently possible to identify when and if an individual will develop type 1 diabetes,” says Koulmanda. “Therefore, it is urgent to identify treatments that can restore normal blood glucose levels in patients with new-onset diabetes before insulin-producing cells are totally destroyed. We hope that our findings offer new hope in the long search for a cure of type 1 diabetes.”

Bonnie Prescott | EurekAlert!
Further information:
http://www.bidmc.harvard.edu

More articles from Health and Medicine:

nachricht New antibody analysis accelerates rational vaccine design
09.08.2018 | Scripps Research Institute

nachricht Distrust of power influences choice of medical procedures
01.08.2018 | Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>